题名

Value-at-Risk Analysis of Container Freight Indices with the Long Memory Volatility Process

并列篇名

貨櫃輪運價指數之風險值分析:考慮運價指數波動率的長期記憶性

作者

張超琦(Chao-Chi Chang)

关键词

Container Freight Indices ; Value-at-Risk (VaR) ; Long Memory ; Fractional IntegratedVolatility Models ; 貨櫃輪運價指數 ; 風險值 ; 長期記憶 ; 分數整合波動模型

期刊名称

蘭陽學報

卷期/出版年月

16期(2017 / 07 / 01)

页次

67 - 85

内容语文

英文

中文摘要

This study aims to apply Value-at-Risk (VaR) models to evaluate the risk of container freight indices when there is a long memory effect. In this study, we calculate the VaR estimations and expected shortfalls for both short and long trading positions. Moreover, we use the Hyperbolic GARCH and the Fractional Integrated Asymmetric Power-ARCH models to analyse the performance of the VaR models with the normal, Student-t and skewed Student-t distributions. Our results suggest that precise VaR estimates may be acquired from a long memory volatility structure with the Student-t and skewed Student-t distributions. Moreover, for the appropriate risk valuation of container freight indices, the degree of persistence should be examined and modelling that includes volatility clustering, fat-tails and long range dependence should be considered. Therefore, our findings provide a more accurate estimation of VaR for container freight indices.

英文摘要

本文旨在考量貨櫃輪運價指數波動具長期記憶特性下,運用風險值(VaR)模型去評估貨櫃輪運價指數的波動風險。在多跟空部位下,本研究分別計算其風險值及預期損失。並以選定具有長期記憶特性的HYGARCH及FIAPARCH模型,去比較在三種不同的分配(常態分配、Student-t分配與偏態Student-t分配)特性下的表現結果。本研究建議在Student-t分配與偏態Student-t分配下,藉由具備長期記憶特性的GARCH模型去估計風險值(VaR),可以得到較為準確的分析結果。亦即當進行運價指數報酬率的風險估計,所採用的估計模型若能同時考量波動叢聚、厚尾、不對稱及長期記憶等特性,將是較為適當的做法,而該模型亦有助於長期的波動預測。

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 基礎與應用科學綜合
醫藥衛生 > 醫藥衛生綜合
生物農學 > 生物農學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
社會科學 > 社會學
参考文献
  1. (2003).Handbook of Heavy Tailed Distributions in Finance.North-Holland:Elsevier.
  2. Alexander, C.(2008).Market Risk Analysis Volume III: Pricing, Hedging and Trading Financial Instruments.Chichester, England:John Wiley & Sons Ltd.
  3. Alizadeh, A.H.,Nomikos, N.K.(2009).Shipping Derivatives and Risk Management.London, UK:Palgrave Macmillan.
  4. Alizadeh, A.H.,Nomikos, N.K.(2011).Dynamics of the term structure and volatility of shipping freight rates.Journal of Transport Economics and Policy,45(1),105-128.
  5. Angelidis, T.,Skiadopoulos, G.(2008).Measuring the market risk of freight rates: a value-at-risk approach.International Journal of Theoretical and Applied Finance,11(5),447-469.
  6. Artzner, P.,Delbaen, F.,Eber, J.-M.,Heath, D.(1999).Coherent measures of risk.Mathematical Finance,9(3),203-228.
  7. Baillie, R.T.,Bollerslev, T.,Mikkelsen, H.O.(1996).Fractionally integrated generalized autoregressive conditional heteroskedasticity.Journal of Econometrics,74(1),3-30.
  8. Bollerslev, T.(1986).Generalized autoregressive conditional heteroskedasticity.Journal of Econometrics,31,307-327.
  9. Bollerslev, T.(1987).A conditionally heteroskedastic time series model for speculative prices and rates of return.The Review of Economics and Statistics,69(3),542-547.
  10. Brooks, C.,Burke, S.P.,Heravi, S.,Persand, G.(2005).Autoregressive conditional kurtosis.Journal of Financial Econometrics,3(3),399-421.
  11. Chang, C.C.,Chou, H.C.,Wu, C.C.(2014).Value-at-risk analysis of the asymmetric long memory volatility process of dry bulk freight rates.Maritime Economics & Logistics,16(3),298-320.
  12. Christoffersen, P.F.(1998).Evaluating interval forecasts.International Economic Review,39(4),841-862.
  13. Davidson, J.(2004).Moment and memory properties of linear conditional heteroscedasticity models, and a new model.Journal of Business and Economic Statistics,22(1),16-29.
  14. Ding, Z.,Granger, C.W.J.,Engle, R.F.(1993).A long memory property of stock market returns and a new model.Journal of Empirical Finance,1,83-106.
  15. Fakhr-Eldin, A.M.,Notteboom, T.(2013).Indexing Container Freight Rates: A Step Towards a Market Pricing Stability Mechanism.International Forum on Shipping, Ports and Airports (IFSPA) 2013: Trade, Supply Chain Activities and Transport: Contemporary Logistics and Maritime Issues,Hong Kong:
  16. Fang, W.(2007).Analysis on Long Memory of the Volatilities of International Dry Bulk Freight Index Using Fractal Theory.Wireless Communications, Networking and Mobile Computing,Shanghai:
  17. Geweke, J.,Porter-Hudak, S.(1983).The estimation and application of long memory time series models.Journal of Time Series Analysis,4(4),221-238.
  18. Goulielmos, A.M.,Psifia, M.(2006).Shipping finance: time to follow a new track?.Maritime Policy & Management,33(3),301-320.
  19. Gu, X.B.,Li, X.Y.(2009).Empirical analysis on long memory property of Baltic Dry Index.Journal of Shanghai Maritime University,30(1),40-44.
  20. Henry, O.T.(2002).Long memory in stock returns: some international evidence.Applied Financial Economics,12(10),725-729.
  21. Hurst, H.E.(1951).Long-term storage capacity of reservoirs.Transactions of the American Society of Civil Engineers,116,770-799.
  22. Jorion, P.(1996).Risk2: measuring the risk in value-at-risk.Financial Analysts Journal,52,47-56.
  23. Kavussanos, M.G.(1996).Comparisons of volatility in the dry-cargo ship sector: spot versus time charters, and smaller versus larger vessels.Journal of Transport Economics and Policy,30(1),67-82.
  24. Kavussanos, M.G.(1996).Price risk modelling of different size vessels in tanker industry using autoregressive conditional heteroscedasticity (ARCH) models.Logistics and Transportation Review,32(2),161-176.
  25. Kavussanos, M.G.(2003).Time varying risks among segments of the tanker freight markets.Maritime Economics and Logistics,5(3),227-250.
  26. Kupiec, P.H.(1995).Techniques for verifying the accuracy of risk measurement models.The Journal of Derivatives,3(2),73-84.
  27. Laurent, S.(2009).Estimating and Forecasting ARCH Models Using G@RCHTM 6.UK: London:
  28. Lo, A.W.(1991).Long-term memory in stock market prices.Econometrica,59(5),1279-1313.
  29. Lu, J.,Marlow, P.B.,Wang, H.(2008).An analysis of freight rate volatility in dry bulk shipping markets.Maritime Policy and Management,35(3),237-251.
  30. Mandelbrot, B.(1972).Statistical methodology for nonperiodic cycles: from the covariance to Rs analysis.Annals of Economic and Social Measurement,1(3),259-290.
  31. Nelsen, R.B.(2006).An Introduction to Copulas.USA:Springer.
  32. Randers, J.,Goluke, U.(2007).Forecasting turning points in shipping freight rates: lessons from 30 years of practical efforts.System Dynamics Review,23(2-3),253-284.
  33. Robinson, P.M.,Henry, M.(1999).Long and short memory conditional heteroskedasticity in estimating the memory parameter in levels.Economic Theory,15,299-336.
  34. Scaillet, O.(2004).Nonparametric estimation and sensitivity analysis of expected shortfall.Mathematical Finance,14(1),115-129.
  35. So, M.K.P.(2000).Long-term memory in stock market volatility.Applied Financial Economics,10(5),519-524.
  36. Tse, Y.K.(1998).The conditional heteroskedasticity of the Yen-Dollar exchange rate.Journal of Applied Econometrics,13(1),49-55.