题名

考慮偏誤修正後之財務預警模式:以台灣上市電子業爲例

并列篇名

Financial Warning Model under Bias Correction: The Taiwanese Listed Electrical Companies as Example

DOI

10.7067/JMHIT.201003.0209

作者

周賢榮(Shyan-Rong Chou);鄭文英(Wen-Ying Cheng);菅瑞昌(Andy Chien);吳千慧(Chien-Hui Wu)

关键词

財務預警模型 ; 偏誤修正 ; 次序羅吉斯迴歸模型 ; Financial warning model ; Bias correction ; Ordered logistic regression model

期刊名称

美和技術學院學報

卷期/出版年月

29卷1期(2010 / 03 / 01)

页次

209 - 225

内容语文

繁體中文

中文摘要

從Beaver(1966)與Altman(1965)提出企業財務預警模式後,便逐漸引起後續學者對此議題廣泛討論與研究。在歷經40年的研究中,雖然財務預警的分析能力有長足進步,但仍然存在些許偏誤問題尚未解決,例如在樣本選取、變數分類及財務預警模型的選擇,因此本文提出解決財務預警偏誤的方法。此外,在修正偏誤的基礎下,本文以台灣上市電子業公司爲研究對象,估算發生財務危機的風險機率,並提供投資者在選股時用來判別公司財務經營狀況的參考指標。 實證結果發現,在修正偏誤下偵測台灣上市電子業公司財務經營階段之整體判別率達93%,且負債佔資產比率及每股盈餘具有最適判別能力。在估算相對風險方面,當負債佔資產比率減少1%時,發生財務危機的風險可減少33%,而每股盈餘減少1%時,則其發生財務危機的風險會增加6.98倍。此外,將負債佔資產比率及每股盈餘財務比率值代入羅吉斯迴歸模式中,若大於-0.539,則判定該公司爲經營正常公司;若計算之值介於-0.539至-12.059問,則判定該公司爲輕度危機公司;若計算後之值小於-12.059,則判定該公司爲重度危機公司。

英文摘要

After the pioneering study by Beaver (1966) and Altman (1968) proposed corporate financial warning models, many scholars have completed empirical research on this topic over the last four decades. Even though the discrimination of financial warning is more accurate, existing biases, such as sample selection, variable classification and traditional model selection, still present problems. This study proposes an approach to overcome the problems listed above. In addition, we examine the financial administration states of Taiwanese listed electrical companies under the corrected biases. Further, we calculate the risk ratio and threshold value of financial administration states. The empirical results show that on the trichotomous classification test, the indices of debt ratio and earnings per share (EPS) have significant differences between financial administration stages. The correct classified rate of all companies is 93%. This paper measures the relative risk in the financial stages and financial ratios. The debt ratio decrease to 1% lead to financial distress risk decreasing 33%, the EPS decrease of 1% lead to financial distress risk increasing 6.98 times. In addition, this paper substituted debt ratio and EPS into the ordered logistic regression model, we classify that the companies are in a normal state of operation when the threshold value is greater than -0.539. The classification of a slight level of crisis is given when the threshold value is between -0.539 and -12.059. The classification that companies are in a heavy degree of crises is given when the threshold value is less than -12.059.

主题分类 人文學 > 人文學綜合
人文學 > 歷史學
醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
社會科學 > 社會科學綜合
参考文献
  1. 鄭文英、李勝榮、葉憲弘(2006)。台灣上市上櫃電子公司經營財務階段判別模式之建立。風險管理學報,8(1),71-96。
    連結:
  2. Alexander, C. O.,Leigh, C. T.(1997).On the Covariance Metrices Used in Value at Risk Models.The Journal of Derivatives,4,50-62.
  3. Altman, E. I.(1968).Financial Rations, Discriminate Analysis and the Prediction of Corporate Bankruptcy.Journal of Finance,23,589-609.
  4. Beaver, W. H.(1966).Financial Rations as Predictors of Failure.Journal of Accounting Research,4,71-111.
  5. Blum, M.(1974).Failing Company Discriminate Analysis.Journal of Accounting Research,12,1-25.
  6. Coats, P. K.,Fant, L. F.(1993).Recognizing Financial Distress Patterns Using Neural Network Tool.Financial Management,Autumn,142-155.
  7. Collins, R. A.,Green, R. D.(1982).Statistical Methods for Bankruptcy Forecasting.Journal of Economice and Business,32,349-354.
  8. Deakin, E. B.(1972).A Discriminant Analysis of Predictors of Failure.Journal of Accounting Research,9,167-179.
  9. Deng, X.,Wang, Z.(2006).Ownership Structure and Financial Distress: Evidence from Public-listed Companied in China.International Journal of Management,23,486-502.
  10. Espahbodi, P.(1991).Identification of Problem Bands and Binary Choice Models.Journal of Business and Finance,15(1),53-71.
  11. Foster, G.(1978).Financial Statement Analysis: Englewood cliffs.New Jersey:Prentice-Hall Inc.
  12. Gentry, J. A.,Newbold, P.,Whitford, D. T.(1985).Predicting bankruptcy: If cash flow's not the bottom line, what is?.Financial Analyst's Journal,41,47-56.
  13. Grice, J. S.,Dugan, M. T.(2001).The Limitations of Bankruptcy Prediction Models: Some Cautions for the Researcher.Journal Finance and Accounting,117,151-166.
  14. Guermat, C.,Harris, R. D. F.(2002).Robust conditional variance estimation and Value-at-Risk.Journal of Risk,4,25-41.
  15. Koh, H. C.,Tan, S. S.(1999).A neural network approach to the prediction of going concern status.Accounting and Business Research,21,211-216.
  16. Laitinen, E. K.(2005).Survival Analysis and Financial Distress Prediction: Finnish Evidence.Review of Accounting and Finance,4,76-90.
  17. Laitinen, E. K.(1991).Financial Ratios and Different Failure Process.Journal of Business Finance and Accounting,18,649-673.
  18. Lau, A. H. L.(1987).A Five-State Financial Distress Predication Model.Journal of Accounting Research,25,127-138.
  19. Mensah, Y. M.(1984).An Examination of The Stationary of Multivariate Bankruptcy Prediction Models: A Methodological Study.Journal of Accounting Research,22,380-395.
  20. Musa, D.,Elaube, W.,Dimitrios T.(2003).Corporate Failure for Manufacturing Industries Using Firms Specifics and Economic environment with Logit Analysis.Managerial Finance,29,23-26.
  21. Odom, M. D.,Sharda, R.(1990).A Neural Network Model for Bankruptcy Prediction.IEEE INNS International Joint Conference on Neural Networks
  22. Ohlson, J. A.(1980).Financial Ratios and Probabilistic Prediction of Bankruptcy.Journal of Accounting Research,18,109-131.
  23. Platt, H. D.,Platt, M. B.(2002).Predicting Corporate Financial Distress: Reflections on Choice-Based Sample Bias.Journal of Economice and Finance,26,184-197.
  24. Richardson, F. M.,Kane, G. D.,Patricia, L.(1998).The Impact of Recession on The Prediction of Corporate Failure.Journal of Business Finance and Accounting,25,167-186.
  25. Tam, K. Y.,Kiang, M. Y.(1992).Managerial Applications of Neural Networks: The Case of Bank Failure Predictions.Management Science,38,926-947.
  26. Theodossiou, P. T.,Kahya, E.(1999).Predicting corporate financial distress: A time-series CUSUM methodology.Review of Quantitative Finance and Accounting,13,323-345.
  27. Ugurlu, M.,Aksoy H.(2006).Prediction of Corporate Financial Distress in an Emerging Market: The Case of Turkey.Cross Cultural Management: an International Journal,13(4),277-96.
  28. Vlaar, P.(2000).Value at Risk Models for Dutch Bond Portfolios.Journal of Banking and Finance,24,1131-1154.
  29. Winship, C.,Mare, R. D.(1984).Regression models with ordinal variables.American Sociological Review,49,512-525.
  30. Zang, S.,Wang, J.,Wu. J.(1999).Grey Modeling Hospital Infection.The Journal of Grey System,11,153-158.
  31. Zhang, G. M.,Hu, Y.,Patuwo, B. E.,Indro, D. C.(1999).Artificial Neural Networks in Bankruptcy Prediction: General Framework and Cross -Validation Analysis.European Journal of Operational Research,116,16-32.
  32. Zmijewski, M. E.(1984).Methodological Issues Related to the Estimation of Financial Distress Prediction Models.Journal of Accounting Research,22,59-80.
  33. 王濟川、郭志剛(1995)。Logistic迴歸模型─方法及應用。台北:五南。
  34. 郭晉源(2002)。整合灰色預測與鑑別分析於企業財務危機預警模式建構之研究。中國統計通訊,13(2),20-31。
  35. 陳肇榮(1983)。博士論文(博士論文)。台北,國立政治大學企業管理研究所。