题名

複相關分析之運算與應用

并列篇名

The Computation and Application of Multiple Correlation Analysis

DOI

10.6792/OM.201002.0107

作者

龔千芬(Chien-Feng Kung);謝國文(Gwo-Wen Shieh)

关键词

檢定力分析 ; 假設檢定 ; 樣本數 ; Excel ; 複相關分析 ; power analysis ; hypothesis testing ; sample size ; Excel ; multiple correlation analysis

期刊名称

組織與管理

卷期/出版年月

3卷1期(2010 / 02 / 01)

页次

107 - 141

内容语文

繁體中文

中文摘要

迴歸分析已廣泛運用於管理、心理、組織及策略等各領域研究中;然而,其中複相關係數分佈的結構十分複雜,許多研究者對直接相關的統計推論,如檢定力計算與所需求之樣本數等議題不熟悉,故衍生許多經驗法則,但許多文獻證明由經驗法則所得之數據並不精確。Shieh 與Kung(2007)在Behavior Research Methods中發展一精確可靠且完整之複相關係數相關功能的軟體。故本研究除了介紹該統計分析軟體之外,也針對研究者經常遇到的統計分析:假設檢定、檢定力計算,以及樣本數等三大議題,利用該軟體之Excel介面的親和性與普及性,提供一全面性且實務性的介紹,以做爲研究規劃與分析之用。另外,本研究針對研究者經常遇到的問題,利用該軟體運算出大量的資料,彙整圖表,期望研究者能藉由此圖表對於複相關分析有進一步深入的體認。最後,並配合個案詳細的說明如何運用此軟體於規劃研究決策或教學展示上。

英文摘要

Regression analysis is widely used in many areas of science, and the literature is very extensive. Classical inferences on correlation coefficients are conducted mainly under the assumption that all variables have a joint multivariate normal distribution. Although the underlying normality assumption provides a convenient and useful setup, the resulting probability density function of the multiple correlation coefficients is notoriously complicated in form. Consequently, considerable attention has been devoted to the construction of useful approximations and rules of thumb for the inferential procedures of squared multiple correlation coefficient. In general, the rules of thumb fail to incorporate effect size and have often provided inaccurate results. In view of the ultimate aim of presenting exact procedures for correlation analysis and the extensive accessibility of Microsoft Excel software, the associated computer routines for hypothesis testing, power calculation, and sample size determination are developed. The statistical methods and available programs of multiple correlation analysis described in this article purport to enhance pedagogical presentation in academic curriculum and practical application in research. Summary tables, figures and related discussions are provided to demonstrate the impact of each of the factors and how they work as whole in multiple correlation analysis. Moreover, a numerical illustration with real data is described to exemplify the usage of the versatile package for management research.

主题分类 社會科學 > 管理學
参考文献
  1. Alf, E. F.,Graf, R. G.(2002).A new maximum likelihood estimator for the population squared multiple correlation.Journal of Educational and Behavior Statistics,27,223-235.
  2. Algina, J.,Olejnik, S.(2003).Sample size tables for correlation analysis with applications in partial correlation and multiple regression analysis.Multivariate Behavioral Research,38,308-323.
  3. Anderson, T. W.(1984).An introduction to multivariate statistical analysis.New York:Wiley.
  4. Baroudi, J. J.,Orlikowski, W. J.(1989).The problem of statistical power in MIS research.MIS Quarterly,March,87-106.
  5. Bobko, P.(2001).Correlation and regression: Applications for industrial organizational psychology and management.Thousand Oaks, CA:Sage.
  6. Borkowski, S. C.,Welsh, M. J.,Zhang, M.(2001).An analysis of statistical power in behavioral accounting research.Behavioral Research in Accounting,13,63-84.
  7. Cohen, J.(1992).A power primer.Psychological Bulletin,112,155-159.
  8. Cohen, J.(1988).Statistical power analysis for the behavioral sciences.Hillsdale, NJ:Erlbaum.
  9. Cumming, G.,Finch, S.(2001).A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions.Educational and Psychological Measurement,61,532-574.
  10. Deci, E. L.,Connell, J. P.,Ryan, R. M.(1989).Self-determination in a work organization.Journal of Applied Psychology,74,580-590.
  11. Ding, C. G.(1996).On the computation of the distribution of the square of the sample multiple correlation coefficient.Computational Statistics & Data Analysis,22,345-350.
  12. Dulebohn, J. H.,Ferris, G. R.(1999).The role of influence tactics in perceptions of performance evaluations' fairness.Academy of Management Journal,42,288-303.
  13. Dunlap, W. P.,Xin, X.,Myers, L.(2004).Computing aspects of power for multiple regression.Behavior Research Methods, Instruments, & Computers,36,695-701.
  14. Fowler, R. L.(1985).Testing for substantive significance in applied research by specifying nonzero effect null hypotheses.Journal of Applied Psychology,70,215-218.
  15. Gatsonis, C.,Sampson, A. R.(1989).Multiple correlation: Exact power and sample size calculations.Psychological Bulletin,106,516-524.
  16. Green, S. B.(1991).How many subjects does it take to do a regression analysis?.Multivariate Behavioral Research,26,499-510.
  17. Harris, R. J.(1985).A primer of multivariate statistics.New York:Academic Press.
  18. Kelly, K.,Maxwell, S. E.(2003).Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant.Psychological Methods,8,305-321.
  19. Lee, Y.(1972).Tables of upper percentage point of the multiple correlation coefficient.Biometrika,59,175-189.
  20. Mason, C. H.,Perreault, W. D.(1991).Collinearity, power, and interpretation of multiple regression analysis.Journal of Marketing Research,28,268-280.
  21. Maxwell, S. E.(2000).Sample size and multiple regression analysis.Psychological Methods,5,434-458.
  22. Maxwell, S. E.(2004).The persistence of underpowered studies in psychological research: Causes, consequences, and remedies.Psychological Methods,9,147-163.
  23. Mazen, A.,Graf, L.,Lellogg, C.,Hemmasi, M.(1987).Statistical power in contempary management research.Academy of Management Journal,30,369-380.
  24. McCullough, B. D.,Wilson, B.(2005).On the accuracy of statistical procedures in Microsoft Excel 2003.Computational Statistics and Data Analysis,49,1244-1252.
  25. Mendoza, J. L.,Stafford, K. L.(2001).Confidence interval, power calculation, and sample size estimation for the squared multiple correlation coefficient under the fixed and random regression models: A computer program and useful standard tables.Educational and Psychological Measurement,61,650-667.
  26. Miller, D.(1988).Relating Porter's business strategies to environment and structure: Analysis and performance implications.Academy of Management Journal,31,280-308.
  27. Murphy. K. R.,Myors, B.(2004).Statistical power analysis: A simple and general model for tradition and modern hypothesis test.Mahwah, NJ:Erlbaum.
  28. Nunnally, J. C.(1978).Psychomertic theory.New York:McGraw-Hill.
  29. Pelled, L. H.,Xin, K. R.(1999).Down and out: An investigation of the relationship between mood and employee withdrawal behavior.Journal of Management,6,875-895.
  30. Rothstein, H. R.,Borenstein, M.,Cohen, J.,Pollack, S.(1990).Statistical power analysis for multiple regression/correlation: A computer program.Educational and Psychological Measurement,50,819-830.
  31. Sedlmeier, P.,Gigerenzer, G.(1989).Do studies of statistical power have an effect on the power of studies?.Psychological Bulletin,105,309-316.
  32. Shieh, G.(2006).Exact interval estimation, power calculation and sample size determination in normal correlation analysis.Psychometrika,71(3),529-540.
  33. Shieh, G.,Kung, C. F.(2007).Methodological and computational considerations for multiple correlation analysis behavior research methods.Behavior Research Methods,39(4),731-734.
  34. Steiger, J. H.,Fouladi, R. T.(1992).R2: A computer program for interval estimation, power calculations, sample size estimation, and hypothesis testing in multiple regression.Behavioral Research Methods Instruments, and Computers,24,581-582.
  35. Wampold, B. E.,Freund, R. D.(1987).Use of multiple regression in counseling psychology research: A flexible data-analytic strategy.Journal of Counseling Psychology,34,372-382.
  36. Wilcox, R. R.(1980).Some exact sample sizes for comparing the squared multiple correlation coefficient to a standard.Educational and Psychological Measurement,40,119-124.