题名

能動者的認知控制:大腦輔助運動區在音樂活動中的重要性

并列篇名

Cognitive Control in Agents: On the Importance of Supplementary Motor Area in the Brain for Music Activities

DOI

10.6244/JOMR.202105_(34).01

作者

蔡振家(Chen-Gia TSAI)

关键词

認知科學 ; 音樂與大腦 ; 即興 ; 意志 ; 動作控制 ; cognitive science ; music and the brain ; improvisation ; volition ; motor control

期刊名称

音樂研究

卷期/出版年月

34期(2021 / 05 / 01)

页次

1 - 28

内容语文

繁體中文

中文摘要

2018年有一篇腦造影研究指出,人們在聆聽音樂時某個腦區的活化,可以預測其未來學習樂器的成效,這個關鍵的腦區即為額葉上方中央的輔助運動區。本文根據腦科學文獻,釐清輔助運動區的多元功能,重新檢視音樂演奏、聆聽、創作,以及音樂治療之間的關係。音樂活動不僅可以強化運動功能,也能強化許多執行控制功能,包括注意力控制、抑制控制、工作記憶、序列處理,以及認知靈活性。在即興演出時,這些功能特別會跟自我意志緊密結合,讓音樂演出者成為能動者,以極具創意又妥善組織的音樂,來表達個人意圖。在這種音樂活動中,輔助運動區扮演著關鍵角色。

英文摘要

A brain imaging research published in 2018 showed that the activation of a brain region when people listen to music can predict their future performance in learning a musical instrument. This key brain area involved is the supplementary motor area located in the superior and medial aspects of the frontal lobe. Based on the literature of brain science, this article reviews the multiple functions of the supplementary motor area and clarifies the relationships between music performance, listening, creation, and music therapy. Music activities not only stimulate motor functions, but also enhance executive control functions, including attention control, inhibitory control, working memory, sequence processing, and cognitive flexibility. These functions are further integrated with volition in musical improvisation, which transforms the role of musical performers to creative "agents" when they can more fully express themselves through structured music. The supplementary motor area plays a key role in this music activity.

主题分类 人文學 > 藝術
参考文献
  1. Alexander, J. C.(ed.),Giesen, B.(ed.),Münch, R.(ed.),Smelser, N. J.(ed.)(1987).The Micro-Macro Link.Berkeley:University of California Press.
  2. Alluri, V.,Toiviainen, P.,Jääskeläinen, I. P.,Glerean, E.,Sams, M.,Brattico, E.(2012).Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm.NeuroImage,59,3677-3689.
  3. Babajani-Feremi, A.(2017).Neural mechanism underling comprehension of narrative speech and its heritability: Study in a large population.Brain Topography,30,592-609.
  4. Baird, A.,Brancatisano, O.,Gelding, R.,Thompson, W. F.(2018).Characterization of music and photograph evoked autobiographical memories in people with Alzheimer’s disease.Journal of Alzheimer’s Disease,66,693-706.
  5. Berkowitz, A. L.,Ansari, D.(2008).Generation of novel motor sequences: The neural correlates of musical improvisation.NeuroImage,41,535-543.
  6. Bohlhalter, S.,Goldfine, A.,Matteson, S.,Garraux, G.,Hanakawa, T.,Kansaku, K.,Hallett, M.(2006).Neural correlates of tic generation in Tourette syndrome: An event-related functional MRI study.Brain,129,2029-2037.
  7. Brown, S.,Martinez, M. J.,Parsons, L. M.(2006).Music and language side by side in the brain: A PET study of the generation of melodies and sentences.European Journal of Neuroscience,23,2791-2803.
  8. Cheung, V. K. M.,Harrison, P. M. C.,Meyer, L.,Pearce, M. T.,Haynes, J.-D.,Koelsch, S.(2019).Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity.Current Biology,29,4084-4092.
  9. Cona, G.,Semenza, C.(2017).Supplementary motor area as key structure for domain-general sequence processing: A unified account.Neuroscience & Biobehavioral Reviews,72,28-42.
  10. de Aquino, M. P. B.,Verdejo-Román, J.,Pérez-García, M.,Pérez-García, P.(2019).Different role of the supplementary motor area and the insula between musicians and non-musicians in a controlled musical creativity task.Scientific Reports,9,13006.
  11. Diamond, A.(2013).Executive functions.Annual Review of Psychology,64,135-168.
  12. Dietrich, S.,Hertrich, I.,Seibold, V. C.,Rolke, B.(2019).Discourse management during speech perception: A functional magnetic resonance imaging (fMRI) study.NeuroImage,202,116047.
  13. Fried, I.,Mukamel, R.,Kreiman, G.(2011).Internally generated preactivation of single neurons in human medial frontal cortex predicts volition.Neuron,69,548-562.
  14. Goel, R.,Nakagome, S.,Rao, N.,Paloski, W. H.,Contreras-Vidal, J. L.,Parikh, P. J.(2019).Fronto-parietal brain areas contribute to the online control of posture during a continuous balance task.Neuroscience,413,135-153.
  15. Grahn, J. A.,Brett, M.(2007).Rhythm and beat perception in motor areas of the brain.Journal of Cognitive Neuroscience,19,893-906.
  16. Haggard, P.(2019).The neurocognitive bases of human volition.Annual Review of Psychology,70,9-28.
  17. Halsband, U.,Ito, N.,Tanji, J.,Freund, H. J.(1993).The role of premotor cortex and the supplementary motor area in the temporal control of movement in man.Brain,116,243-266.
  18. Herholz, S. C.,Halpern, A. R.,Zatorre, R. J.(2012).Neuronal correlates of perception, imagery, and memory for familiar tunes.Journal of Cognitive Neuroscience,24,1382-1397.
  19. Hickok, G.,Poeppel, D.(2007).The cortical organization of speech processing.Nature Reviews Neuroscience,8,393-402.
  20. Jacobsen, J.-H.,Stelzer, J.,Fritz, T. H.,Chételat, G.,La Joie, R.,Turner, R.(2015).Why musical memory can be preserved in advanced Alzheimer’s disease.Brain,138,2438-2450.
  21. Kennerley, S. W.,Sakai, K.,Rushworth, M. F. S.(2004).Organization of action sequences and the role of the pre-SMA.Journal of Neurophysiology,91,978-993.
  22. Leaver, A. M.,Van Lare, J.,Zielinski, B.,Halpern, A. R.,Rauschecker, J. P.(2009).Brain activation during anticipation of sound sequences.Journal of Neuroscience,29,2477-2485.
  23. Leggieri, M.,Thaut, M. H.,Fornazzari, L.,Schweizer, T. A.,Barfett, J.,Munoz, D. G.,Fischer, C. E.(2019).Music intervention approaches for Alzheimer’s disease: A review of the literature.Frontiers in Neuroscience,13,132.
  24. Leipold, S.,Brauchli, C.,Greber, M.,Jäncke, L.(2019).Absolute and relative pitch processing in the human brain: Neural and behavioral evidence.Brain Structure and Function,224,1723-1738.
  25. Lima, C. F.,Krishnan, S.,Scott, S. K.(2016).Roles of supplementary motor areas in auditory processing and auditory imagery.Trends in Neurosciences,39,527-542.
  26. Linden, D. E.,Thornton, K.,Kuswanto, C. N.,Johnston, S. J.,van de Ven, V.,Jackson, M. C.(2011).The brain’s voices: Comparing nonclinical auditory hallucinations and imagery.Cerebral Cortex,21,330-337.
  27. Liu, S.,Chow, H. M.,Xu, Y.,Erkkinen, M. G.,Swett, K. E.,Eagle, M. W.,Braun, A. R.(2012).Neural correlates of lyrical improvisation: An fMRI study of freestyle rap.Scientific Reports,2,834.
  28. McNorgan, C.(2012).A meta-analytic review of multisensory imagery identifies the neural correlates of modality-specific and modality-general imagery.Frontiers in Human Neuroscience,6,285.
  29. Norgaard, M.,Stambaugh, L. A.,McCranie, H.(2019).The effect of jazz improvisation instruction on measures of executive function in middle school band students.Journal of Research in Music Education,67,339-354.
  30. Orgogozo, J. M.,Larsen, B.(1979).Activation of the supplementary motor area during voluntary movement in man suggests it works as a supramotor area.Science,206,847-850.
  31. Passingham, R. E.,Bengtsson, S. L.,Lau, H. C.(2010).Medial frontal cortex: From self-generated action to reflection on one’s own performance.Trends in Cognitive Sciences,14,16-21.
  32. Penfield, W.,Welch, K.(1951).The supplementary motor area of the cerebral cortex: A clinical and experimental study.AMA Archives of Neurology and Psychiatry,66,289-317.
  33. Pinho, A. L.,de Manzano, Ö.,Fransson, P.,Eriksson, H.,Ullén, F.(2014).Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.Journal of Neuroscience,34,6156-6163.
  34. Potgieser, A. R. E.,de Jong, B. M.,Wagemakers, M.,Hoving, E. W.,Groen, R. J.M.(2014).Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition.Frontiers in Human Neuroscience,8,960.
  35. Rauschecker, J. P.(2011).An expanded role for the dorsal auditory pathway in sensorimotor control and integration.Hearing Research,271,16-25.
  36. Sachs, M.,Kaplan, J.,Der Sarkissian, A.,Habibi, A.(2017).Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task.PLoS ONE,12,e0187254.
  37. Sacks, O.(1992).Tourette’s syndrome and creativity.British Medical Journal,305,1515-1516.
  38. Sakai, K.,Hikosaka, O.,Nakamura, K.(2004).Emergence of rhythm during motor learning.Trends in Cognitive Sciences,8,547-553.
  39. Schaefer, R. S.,Morcom, A. M.,Roberts, N.,Overy, K.(2014).Moving to music: Effects of heard and imagined musical cues on movement-related brain activity.Frontiers in Human Neuroscience,8,774.
  40. Schwartze, M.,Rothermich, K.,Kotz, S. A.(2012).Functional dissociation of pre-SMA and SMA-proper in temporal processing.NeuroImage,60,290-298.
  41. Segado, M.,Hollinger, A.,Thibodeau, J.,Penhune, V.,Zatorre, R. J.(2018).Partially overlapping brain networks for singing and cello playing.Frontiers in Neuroscience,12,351.
  42. Seger, C. A.,Spiering, B. J.,Sares, A. G.,Quraini, S. I.,Alpeter, C.,David, J.,Thaut, M. H.(2013).Corticostriatal contributions to musical expectancy perception.Journal of Cognitive Neuroscience,25,1062-1077.
  43. Seghezzi, S.,Zirone, E.,Paulesu, E.,Zapparoli, L.(2019).The brain in (willed) action: A meta-analytical comparison of imaging studies on motor intentionality and sense of agency.Frontiers in Psychology,10,804.
  44. Takeuchi, H.,Taki, Y.,Nouchi, R.,Yokoyama, R.,Kotozaki, Y.,Nakagawa, S.,Kawashima, R.(2018).General intelligence is associated with working memory-related brain activity: New evidence from a large sample study.Brain Structure and Function,223,4243-4258.
  45. Tanaka, S.,Kirino, E.(2017).Dynamic reconfiguration of the supplementary motor area network during imagined music performance.Frontiers in Human Neuroscience,11,606.
  46. Taren, A. A.,Venkatraman, V.,Huettel, S. A.(2011).A parallel functional topography between medial and lateral prefrontal cortex: Evidence and implications for cognitive control.Journal of Neuroscience,31,5026-5031.
  47. Tsai, C.-G.,Chen, C.-C.,Chou, T.-L.,Chen, J.-H.(2010).Neural mechanisms involved in the oral representation of percussion music: An fMRI study.Brain and Cognition,74,123-131.
  48. Tsai, C.-G.,Chou, T.-L.,Li, C.-W.(2018).Roles of posterior parietal and dorsal premotor cortices in relative pitch processing: Comparing musical intervals to lexical tones.Neuropsychologia,119,118-127.
  49. Tsai, C.-G.,Fan, L.-Y.,Lee, S.-H.,Chen, J.-H.,Chou, T.-L.(2012).Specialization of the posterior temporal lobes for audio-motor processing – Evidence from a functional magnetic resonance imaging study of skilled drummers.European Journal of Neuroscience,35,634-643.
  50. Wiener, M.,Turkeltaub, P.,Coslett, H. B.(2010).The image of time: A voxel-wise meta-analysis.NeuroImage,49,1728-1740.
  51. Williams, T. I.(2015).The classification of involuntary musical imagery: The case for earworms.Psychomusicology: Music, Mind, and Brain,25,5-13.
  52. Wollman, I.,Penhune, V.,Segado, M.,Carpentier, T.,Zatorre, R. J.(2018).Neural network retuning and neural predictors of learning success associated with cello training.Proceedings of the National Academy of Sciences of the United States of America,115,E6056-E6064.
  53. Zatorre, R. J.,Chen, J. L.,Penhune, V. B.(2007).When the brain plays music: Auditory-motor interactions in music perception and production.Nature Reviews Neuroscience,8,547-558.
  54. Zhang, Y.,Chen, G.,Wen, H.,Lu, K.-H.,Liu, Z.(2017).Musical imagery involves Wernicke’s area in bilateral and anti-correlated network interactions in musicians.Scientific Reports,7,17066.
  55. 徐頌仁, S.-J.(2001).音樂演奏的實際探討.臺北=Taipei:全音樂=Chuan Yin Music.
  56. 薩克斯, O.,廖月娟(譯), Y.-J.(Trans.)(2008).腦袋裝了 2000 齣歌劇的人.臺北=Taipei:天下文化=Bookzone.