题名

影響六年級學生立方體計數表現的因素-空間定位與視覺化的角色

并列篇名

Exploring the Factors That Influence Sixth Graders' Cubic Enumeration: The Roles of Spatial Orientation and Visualization

DOI

10.6251/BEP.20081212

作者

張碧芝(Pi-Chih Chang);吳昭容(Chao-Jung Wu)

关键词

立方體計數 ; 空間定位 ; 空間能力 ; 空間視覺化 ; 群組 ; chunking ; cube enumeration ; spatial ability ; spatial orientation ; spatial visualization

期刊名称

教育心理學報

卷期/出版年月

41卷1期(2009 / 09 / 01)

页次

125 - 145

内容语文

繁體中文

中文摘要

立方體計數作業常被用來測量空間能力,也是數學課程中空間與圖形領域的學習活動,本研究以六年級學生爲受試者,探討空間定位與視覺化能力對該作業表現的影響。材料分爲高、低規律兩類型,低規律題操弄隱藏立方體個數(分4、5、6、7個隱藏個數),隱藏立方體分佈的零散程度(分二向度及三向度)。高規律題分爲外形完整與不完整兩類。研究採紙筆團體施測收集204名學生的正確率,以及個別施測測與訪談收集40名學生的正確率、解題時間、主觀難度的評定,與解題策略。結果,學生解題的正確率、時間,和主觀難度,在高規律題上的表現優於低規律題,隱藏向度二的表現優於向度三,而隱藏個數的效果並不明顯,且立方體外形的完整與否並不影響正確率與解題時間,顯示影響學生立方體計數表現的因素,除了Ben-Haim 等人(1985)與Battista 和Clements(1996, 1998)所主張的,從2D圖形轉換成3D的表徵理解能力,以及協調各視點以對隱藏部份立方體產生心像的定位能力之外,對六年級學生而言,群組與挪移等動態心像操弄的視覺化能力更爲關鍵。

英文摘要

The task of enumerating the number of 3-D cube arrays is used to evaluate and develop student's spatial ability. This research investigates the roles of spatial orientation and visualization of sixth graders in cube enumeration. The material included two types of cube arrays-low regularity and high regularity. We tested two independent variables in low regularity arrays-number and distribution of hidden cubes. The former had four levels (i.e., 4, 5, 6, or 7) of hidden cubes. The latter were divided into two axes and three axes according to the degrees of the hidden cubes. High regularity arrays were divided into outside intact and non-intact types depending on whether the appearance is integral or not. Paper-and-pencil questionnaire was group-administered to collect the hit rate of 204 students. Individual interviews were also conducted to gather data on hit rate, response time, difficulty rating, and strategies from 40 students. Results showed that high regularity arrays yielded better performance than low regularity arrays, and two axes condition yielded better performance than three axes condition. The effects of the number of hidden cubes are not as steady. There are no significantly differences in hit rate and response time between the intact and non-intact groups. Current literature (Battista et al., 1996, 1998, & 1999; Ben-Chaim et al., 1985) has claimed that students' difficulty in cubes enumeration is due to deficiencies of mental imagery or orthogonal coordination. However, we argue that visualization is more influential than spatial orientation.

主题分类 社會科學 > 心理學
社會科學 > 教育學
参考文献
  1. Battista, M. T.(1999).Fifth graders' enumeration of cubes in 3D arrays: Conceptual progress in an inquiry-based classroom.Journal for Research in Mathematics Education,30(4),417-448.
  2. Battista, M. T.,Clements, D. H.(1998).Finding the number of cubes in rectangular cube building.Teaching Children Mathematics,4(5),258-264.
  3. Battista, M. T.,Clements, D. H.(1996).Student's understanding of three-dimensional rectangular arrays of cubes.Journal for Research in Mathematics Education,27(3),258-292.
  4. Ben-Haim, D.,Lappan, G.,Houang, R. T.(1985).Visualizing rectangular solids made of small cubes: Analyzing and effecting student's performance.Educational Studies in Mathematics,16(4),389-409.
  5. Brown, D. L.,Wheatley, G. H.,C. A. Maher(Eds.),G. A. Goldin(Eds.),R. B. Davis(Eds.)(1989).Relationship between spatial knowledge and mathematics knowledge.Proceedings of the eleventh annual meeting, North American chapter of the International Group for the Psychology of Mathematics Education,New Brunswick, NJ:
  6. Clements, D. H.,Battista, M. T.,D. A. Grouws(Ed.)(1992).Handbook of research on mathematics teaching and learning.NY:Macmillan.
  7. Eliot, J.(1980).Classification of figural spatial tests.Perceptual & Motor Skills,51(1),847-851.
  8. Linn, M. C.,Peterson, A. C.(1985).Emergence and characterization of sex differences in spatial ability: A meta-analysis.Child Development,56(6),1479-1498.
  9. McGee, M. C.(1979).Human spatial ability: Psychometric studies and environmental, genetic, hormonal, and neurological influence.Psychological Bulletin,86(5),889-918.
  10. National Council of Teachers of Mathematics(2000).Principles and standards for school mathematics.Reston, VA:The Council.
  11. National Council of Teachers of Mathematics (NCTM)(1989).Curriculum and evaluation standards for school mathematics.Reston, VA:The Council.
  12. O''Driscoll-Tole, K.(1998).Identifying spatial skills that underpin the 5-14 Mathematics Curriculum in Scotland.Paper presented at the 1998 conference of the Scottish Educational Research Association, the University of Dundee,UK:
  13. Olkun, S.,Knaupp, J. E.(2000).Children's understanding of rectangular solids made of small cubes.Paper presented at the 1999 annual meeting of Southwest Educational Research Association,San Antonio:
  14. Reio, T. G.,Czamolewski, M.,Eliot, J.(2004).Handedness and spatial ability: Differential patterns of relationships.Laterality,9(3),339-358.
  15. Shea, D. L.,Lubinski, D.,Benbow, C. P.(2001).Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study.Journal of Educational Psychology,93(3),604-614.
  16. Woodman, G. F.,Vecera, S. P.,Luck, S. J.(2003).Perceptual organization influences visual working memory.Psychonomic Bulletin & Review,10(1),80-87.
  17. 教育部(1993)。國民小學八十二年版課程綱要。台北市:教育部。
  18. 教育部(2003)。九年一貫數學學習領域課程綱要。台北市:教育部。
  19. 陸偉明(1999)。空間能力測量之效度分析。中國測驗學會測驗年刊,46(2),101-111。
  20. 蔣家唐(1995)。行政院國家科學委員會專題研究計劃成果報告,NSC84-2511-S-018-003行政院國家科學委員會專題研究計劃成果報告,NSC84-2511-S-018-003,未出版
  21. 蔣家唐(1994)。「第一屆特殊教育課程與教學論文發表會」宣讀之論文。彰化:國立彰化師範大學。
被引用次数
  1. 陳光勳、王毓婕(2016)。運用幾何軟體 Cabri 3D 與實體積木教具教學對國小二年級學童學習空間旋轉概念之影響。臺灣數學教育期刊,3(1),19-54。
  2. 黃幸美(2015)。體積電子教材設計與教學試驗─小學五年級。教科書研究,8(2),73-106。
  3. 黃幸美(2015)。整合三維空間幾何概念與體積的數位教材與教學試驗。科學教育學刊,23(1),53-82。
  4. 譚寧君、葉淑珍、楊凱翔(2014)。建立立體心像教學活動之國小體積課程設計本位研究。人文社會學報,10(3),225-252。
  5. 楊凱琳、陳韻如、林福來(2018)。國小高年級學生在立方積木三視圖的推理表現。臺灣數學教育期刊,5(1),1-34。
  6. 詹孟琦,梁文瀞,張靖卿(2020)。高中資優生假設驗證能力之探究。資優教育季刊,153,15-28。