题名

兩種線段圖表徵解題策略在學習成效上的比較

并列篇名

The Comparison of Two Mathematics Problem-Solving Strategies of Line-Diagram Representations on Learning Achievements

DOI

10.6251/BEP.20150603

作者

黃一泓(Yi-Hung Huang);謝進泰(Jin-Tai Shie)

关键词

表徵 ; 認知負荷理論 ; 線段圖 ; cognitive load theory ; line diagram ; representations

期刊名称

教育心理學報

卷期/出版年月

47卷4期(2016 / 06 / 01)

页次

581 - 601

内容语文

繁體中文

中文摘要

本研究探討國小六年級學童在「基準量與比較量」單元中,使用長度線段圖與成比例線段圖表徵的解題策略時,對學童所產生的認知負荷與學習成效的影響。研究者先以Schnotz 提出的文字與圖像理解的整合模式(integrated model of text and picture comprehension)為依據,分析兩種表徵解題策略的認知過程,並以認知負荷理論為基礎,探討兩者在認知負荷上的差異。研究方法採取真實驗設計,以三階段的實驗來驗證此分析的論點,並且得到下列結論:成比例線段圖表徵的解題策略在後測成績的表現顯著優於長度線段圖表徵的解題策略。然而,當學童學習「比與比值」單元後,兩種不同表徵解題策略在延宕測驗的表現並沒有顯著差異。最後,針對研究的結果,提出線段圖表徵解題策略在教學上的意義。

英文摘要

This research is to study how the two mathematics problem-solving strategies, length and proportional line-diagram representations, affect sixth grade students’ cognitive load and learning performance during they study the unit of "baseline and comparison". The researchers adopted Schnotz’s integrated model of text and picture comprehension to analyze the cognitive process of studying worked examples with line diagram, and compare the differences in term of cognitive load between the two methods based on cognitive load theory. Then, the researcher conducted a three phases of true-experimental design to show the effectiveness of our analysis. The experimental results show that the proportional line-diagram condition performed significantly better than the length line-diagram condition on post-tests, and after the students had learned the unit of "ratio", the difference between the length line-diagram condition and the proportional line-diagram condition on delay-test are not significant. Finally, the researcher will provide some implications for the educational authorities, teachers, and future researches.

主题分类 社會科學 > 心理學
社會科學 > 教育學
参考文献
  1. 黃一泓、虞翔(2014)。不同範例與解題組合對初學者在學習上的影響。教育心理學報,45(4),497-515。
    連結:
  2. 凃金堂(2011)。運用「範例(worked-out example)」在國小數學問題解決的教學實驗研究。教育心理學報,43(1),25-50。
    連結:
  3. (2012)。國民小學數學課本、備課指引第十二冊。台南=Tainan, Taiwan:南一=Nani Press。
  4. (2012)。國小數學6 下教師手冊。新北=New Taipei, Taiwan:康軒=Kang Hsuan Press。
  5. (2012)。國民小學數學第十二冊教師手冊。台南=Tainan, Taiwan:翰林=Hanlin Press。
  6. Anderson, J. R.(1996).ACT: A simple theory of complex cognition.American Psychologist,51,355-365.
  7. Cohen, S. A.,Stover, G.(1981).Effects of teaching sixth grade students to modify format variables of math word problems.Reading Research Quarterly,16,175-199.
  8. Harel, G.(Ed.),Confrey, J.(Ed.)(1994).The development of multiplicative reasoning in the learning of mathematics.Albany, NY:State University of New York Press.
  9. Kintsch, W.(1998).Comprehension: A paradigm for cognition.New York, NY:Cambridge University Press.
  10. Koedinger, K. R.,Terao, A.(2002).A cognitive task analysis of using pictures to support pre-algebraic reasoning.Proceedings of the twenty-fourth annual conference of the cognitive science society,Mahwah, NJ:
  11. Mayer, R. E.(Ed.)(2005).The Cambridge handbook of multimedia learning.New York, NY:Cambridge University Press.
  12. McCloskey, A.,Norton, A.(2009).Using Steffe's advanced fraction schemes.Mathematics Teaching in the Middle School,15(1),44-50.
  13. Moreno, R.,Mayer, R. E.(2000).Engaging students in active learning: The case for personalized multimedia messages.Journal of Educational Psychology,93,165-173.
  14. Plass, J. L.(Ed.),Moreno, R.(Ed.),Brünken, R.(Ed.)(2010).Cognitive Load Theory.New York, NY:Cambridge University Press.
  15. Saenz-Ludlow, A.(1994).Michael's fraction schemes.Journal for Research in Mathematics Education,25(1),50-85.
  16. Schnotz, W.,Bannert, M.(2003).Construction and interference in learning from multiple representations.Learning and Instruction,13,141-156.
  17. Sweller, J.(2010).Element interactivity and intrinsic, extraneous, and germane cognitive load.Educational Psychology Review,22,123-138.
  18. Sweller, J.(1988).Cognitive load during problem solving: Effects on learning.Cognitive Science,12,257-285.
  19. Wong, A.,Leahy, W.,Marcus, N.,Sweller, J.(2012).Cognitive load theory: The transient information effect and e-learning.Learning and Instruction,22,449-457.
  20. 朱建正、吳昭容(1993)。行政院國家科學委員會研究計畫成果報告行政院國家科學委員會研究計畫成果報告,行政院國家科學委員會=National Science Council。
  21. 李玉珍(2013)。Pingtung, Taiwan,國立屏東教育大學數理教育研究所=Graduate Institute of Mathematics and Science Education, National Pingtung University of Education。
  22. 周筱亭編、黃敏晃編(2002)。國小數學教材分析-比(含線段圖)
  23. 林施君(2013)。Pingtung, Taiwan,國立屏東教育大學數理教育研究所=Graduate Institute of Mathematics and Science Education, National Pingtung University of Education。
  24. 教育部臺灣省國民學校教師研習會編(1998)。國小數學科新課程概說(高年級)─協助兒童認知發展的數學課程。新北=New Taipei, Taiwan:台灣省國民學校教師研習會=Elementary School Teacher Workshops Press。
  25. 劉祥通(2004)。分數與比例問題解題分析—從數學提問教學的觀點。台北=Taipei, Taiwan:師大書苑=Lucky Book。
  26. 蔣治邦(2001)。中年級學童「部份-全體」運思的發展:文字題選圖與解題作業表現的差異。中華心理學刊,43(2),239-254。
  27. 顏宗斌、劉祥通(2005)。一位國小六年級學生在分數基準化問題的解題表現。科學教育研究與發展季刊,41,44-73。
被引用次数
  1. 蔡曉回,袁媛(2020)。國小二年級學生在古氏積木、錢幣、櫻桃表徵物問題下的位值概念研究。臺灣數學教育期刊,7(2),25-44。
  2. 黃一泓(2021)。解題時機與範例類型對學習成效與認知負荷的影響。教育心理學報,52(4),731-755。
  3. (2023)。以圖形模型表徵解分數除法問題之研究-以臺中市一所國小六年級學生為例。教育科學期刊,22(2),51-76。