题名

Lexicographic Strong Belief and Perfect Extensive-Form Rationalizability

并列篇名

辭典式強信念與完美展開形式可合理化

作者

楊智鈞(Chih-Chun Yang)

关键词

Lexicographic strong belief ; Perfect lexicographic extensive-form rationalizability ; Perfect extensive-form rationalizability ; Lexicographic probability system ; 辭典式強相信 ; 完美展開形式可合理化 ; 完美辭典式展開形式可合理化 ; 辭典式機率系統

期刊名称

經濟論文

卷期/出版年月

48卷1期(2020 / 03 / 01)

页次

1 - 31

内容语文

英文

中文摘要

Within the framework of lexicographic probability systems (LPS's), we propose the notion of lexicographic strong belief. Perfect lexicographic extensive-form rationalizability (PLEFR) is defined by perfect rationality and common lexicographic strong belief of perfect rational strategies. We show Yang's (2018) perfect extensive-form rationalizability (PEFR) is equivalent to PLEFR.

英文摘要

在辭典式機率系統的架構下,我們提出辭典式強信念此一概念。完美辭典式展開形式可合理化則定義成完美理性與共同辭典式強信念完美理性策略。我們證明Yang(2018)的完美展開形式可合理化與之等價。

主题分类 社會科學 > 經濟學
参考文献
  1. Chen, C.-H.(2005).Large Trader, Endogenous Beliefs and Currency Crises.Academia Economic Papers,33(3),351-378.
    連結:
  2. Asheim, G. B.,Perea, A.(2005).Sequential and Quasi-Perfect Rationalizability in Extensive Games.Games and Economic Behavior,53,15-42.
  3. Battigalli, P.(1997).On Rationalizability in Extensive Games.Journal of Economic Theory,74(1),40-61.
  4. Battigalli, P.(1996).Strategic Rationality Orderings and the Best Rationalization Principle.Games and Economic Behavior,13,178-200.
  5. Battigalli, P.,Siniscalchi, M.(2002).Strong Belief and Forward Induction Reasoning.Journal of Economic Theory,106(2),356-391.
  6. Bernheim, D.(1984).Rationalizable Strategic Behavior.Econometrica,52(4),1007-1028.
  7. Blume, L.,Brandenburger, A.,Dekel, E.(1991).Lexicographic Probabilities and Equilibrium Refinements.Econometrica,59(1),81-98.
  8. Blume, L.,Brandenburger, A.,Dekel, E.(1991).Lexicographic Probabilities and Choice under Uncertainty.Econometrica,59(1),61-79.
  9. Brandenburger, A.(1992).Lexicographic Probabilities and Iterated Admissibility.Economic Analysis of Markets and Games,Cambridge, MA:
  10. Brandenburger, A.,Friedenberg, A.,Keisler, H. J.(2008).Admissibility in Games.Econometrica,76(2),307-352.
  11. Cho, I. K.,Kreps, D.(1987).Signalling Games and Stable Equilibria.Quarterly Journal of Economics,102,179-221.
  12. Dekel, E.,Fudenberg, D.(1990).Rational Behavior with Payoff Uncertainty.Journal of Economic Theory,52(2),243-267.
  13. Myerson, R.(1986).Multistage Games with Communication.Econometrica,54(2),323-358.
  14. Pearce, D.(1984).Rationalizable Strategic Behavior and the Problem of Perfection.Econometrica,52(4),1029-1050.
  15. Perea, A.(2018).Why Forward Induction Leads to the Backward Induction Outcome: A New Proof for Battigalli’s Theorem.Games and Economic Behavior,110,120-138.
  16. Rényi, A.(1955).On a New Axiomatic Theory of Probability.Acta Mathematica Hungarica,6(3),285-335.
  17. Rubinstein, A.(1982).Perfect Equilibrium in a Bargaining Model.Econometrica,50(1),97-109.
  18. Selten, R.(1975).Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games.International Journal of Game Theory,4(1),25-55.
  19. Tan, T.,Werlang, S.(1988).The Bayesian Foundations of Solution Concepts of Games.Journal of Economic Theory,45,370-391.
  20. Yang, C.-C.(2015).Weak Assumption and Iterative Admissibility.Journal of Economic Theory,158(A),87-101.
  21. Yang, C.-C.(2018).Perfect Forward Induction.Economics Letters,170,113-116.