题名

在給定先驗分配下最適計數值品質檢驗計畫之研究

并列篇名

A Study on Optimal Quality Inspection Plan of Attributes Under Given Prior Distribution

DOI

10.6220/joq.202308_30(4).0002

作者

黃允成(Yun-Cheng Huang);江旻倩(Min Qian Jiang);張簡政利(Cheng-Li Chang Chien)

关键词

先驗機率 ; 最適抽樣個數 ; 最適容許不良品個數 ; priori probability ; optimal sample number ; optimal allowable number of defects

期刊名称

品質學報

卷期/出版年月

30卷4期(2023 / 08 / 30)

页次

281 - 308

内容语文

繁體中文;英文

中文摘要

本研究應用統計理論建構進貨商之產品抽樣檢驗計畫決定機制,在母體不良率未知之情境下,分別採用連續均勻分配、貝他分配與常態分配為其先驗機率分配,樣本不良品個數則在各先驗機率下服從超幾何分配。以實務角度開發智慧型品質管制抽樣系統,並將多項成本之目標函數整合為單一指標,包含檢驗成本、外部損失成本與懲罰成本,以期望總品質成本最小化為目標,求解最適抽樣個數與最適容許不良品個數之組合。最後,透過模擬數據測試與分析,並進一步將各系統參數進行多變數之敏感度分析,以探討各系統參數對最適決策變數組合及期望總品質成本之影響。實證結果顯示,使用本研究所開發之智慧型品質管制抽樣系統,可找到使期望總品質成本最小化之最適抽樣個數與最適容許不良品個數之組合。

英文摘要

This study applies statistical theory to construct the decision mechanism of the product sampling inspection plan of the purchaser. In the context of unknown population defect rate, continuous uniform distribution, beta distribution, and normal allocation are used to allocate their priori probability. The number of defective products in the sample is subject to hypergeometric distribution at each prior probability. We will develop an intelligent quality management sampling system from a practical point of view and integrate the objective function of multiple costs to a single metric. It includes the inspection cost, external loss costs, and penalty costs, and targets the expected total quality cost minimization, to solve the combination of the optimal sampling number and the optimal allowable number of defects. In the end, through the simulation data test and analysis, and further analyze the sensitivity of each system parameter for multi-variable, we investigate the effect of various system parameters on the optimal decision-making variable combination and the expected total quality cost. Empirical results show that the intelligent quality management sampling system developed by this study can find the combination of the optimal sampling number and the optimal allowable number of defects in the situation of the expected total quality cost minimization.

主题分类 社會科學 > 管理學
参考文献
  1. Aslam, M.,Wu, C.-W.,Azam, M.,Jun, C.-H.(2013).Variable sampling inspection for resubmitted lots based on process capability index Cpk for normally distributed items.Applied Mathematical Modelling,37(3),667-675.
  2. Bartolucci, A. A.,Bartolucci, A. D.,Bae, S.,Singh, K. P.(2006).A Bayesian method for computing sample size and cost requirements for stratified random sampling of pond water.Environmental Modelling & Software,21(9),1319-1323.
  3. Bouslah, B.,Gharbi, A.,Pellerin, R.(2016).Joint economic design of production, continuous sampling inspection and preventive maintenance of a deteriorating production system.International Journal of Production Economics,173,184-198.
  4. Champernowne, D. G.(1953).The economics of sequential sampling procedures for defectives.Journal of the Royal Statistical Society: Series C (Applied Statistics),2(2),118-130.
  5. Cheng, T.-m.,Chen, Y.-l.(2007).A GA mechanism for optimizing the design of attribute double sampling plan.Automation in Construction,16(3),345-353.
  6. Fernández, A. J.(2019).Optimal attribute sampling plans in closed-forms.Computers & Industrial Engineering,137,106066.
  7. Hsu, B.-M.,Wang, T.-C.,Shu, M.-H.(2020).Lot-dependent sampling plans for qualifying long-term production capability with a one-sided specification.Computers & Industrial Engineering,146,106583.
  8. Hussain, S. A.,Ahmad, I.,Saghir, A.,Aslam, M.,Almanjahie, I. M.(2021).Mean ranked acceptance sampling plan under exponential distribution.Ain Shams Engineering Journal,12(4),4125-4133.
  9. Kamalov, F.,Denisov, D.(2020).Gamma distribution-based sampling for imbalanced data.Knowledge-Based Systems,207,106368.
  10. Kobilinsky, A.,Bertheau, Y.(2005).Minimum cost acceptance sampling plans for grain control, with application to GMO detection.Chemometrics and Intelligent Laboratory Systems,75(2),189-200.
  11. Qin, R.,Cudney, E. A.,Hamzic, Z.(2015).An optimal plan of zero-defect single-sampling by attributes for incoming inspections in assembly lines.European Journal of Operational Research,246(3),907-915.
  12. Tong, X.,Wang, Z.,Xie, H.,Liang, D.,Jiang, Z.,Li, J.,Li, J.(2011).Designing a two-rank acceptance sampling plan for quality inspection of geospatial data products.Computers & Geosciences,37(10),1570-1583.
  13. Williams, M. S.,Ebel, E. D.,Golden, N. J.(2019).Revising a constrained 2-class attributes sampling plan when laboratory methods are changed.Microbial Risk Analysis,11,66-75.
  14. Žerovnik, G.,Trkov, A.,Kodeli, I. A.(2012).Correlated random sampling for multivariate normal and log-normal distributions.Nuclear Instruments & Methods in Physics Research—Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,690,75-78.