题名

隨機利率下歐式遠期生效選擇權之評價與避險

并列篇名

Pricing and Hedging of European Forward Start Option under Stochastic Interest Rate

DOI

10.6545/JFS.2002.10(1).1

作者

謝承熹(Cheng-Hsi Hsieh)

关键词

歐式遠期生效選擇權 ; Heath-Jarrow-Morton模型 ; 遠期測度評價法 ; European Forward Start Option ; Heath-Jarrow-Morton Model ; Forward Measure ; Method

期刊名称

財務金融學刊

卷期/出版年月

10卷1期(2002 / 04 / 30)

页次

1 - 22

内容语文

繁體中文

中文摘要

在利率不為常數的經濟體下,本文評價歐式遠期生效選擇權,並分析其避險比率。首先,本文假設利率的隨機過程遵循Heath-Jarrow-Morton(1992)模型,並在遠期利率波動結構僅為時間函數的假設下,利用遠期測度評價法推導歐式遠期生效選擇權之評價封閉解。接著本文分析隨機利率下,歐式遠期生效選擇權的各種避險比率;文中發現,在權利生效前,股價報酬波動率為逾期生效選擇權最重要的風險。最後本文比較常數利率與隨機利率下,歐式遠期生效選擇權的價格,並探究在不同的參數組合下之價格差異程度。

英文摘要

This paper studies how to price and hedge the European forward start option under stochastic interest rate. The interest rates are, first, supposed to follow the Heath-Jarrow-Morton framework. By further assuming the volatility of the forward interest rate is a deterministic function of time and applying forward measure method, closed-form solution for the European forward start option can then be derived. At the second step, the hedge ratios of the European forward start option are analyzed under stochastic interest rate. It is shown, in this paper, that the risk of the volatility of stock return is the most important risk of the European forward start option before the option becomes effective. We, lastly, compare the premiums of the European forward start option under stochastic and non-stochastic interest rate, and discuss the difference of premiums with different parameter inputs.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Amin, K. I.,Jarrow, R. A.(1991).Pricing Foreign Currency Options under Stochastic Interest Rates.Journal of International Money and Finance,10(3)
  2. Amin, K.,Morton, R.(1994).Implied Volatility Functions in Arbitrage-Free Term Structure Models.Journal of Financial Economics,35
  3. Black, F.,Derman, E.,Toy, W.(1990).A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options.Financial Analysts Journal,46(1)
  4. Black, F.,Karasinski, P.(1991).Bond and Option Pricing When Short Rates Are Lognormal.Financial Analysts Journal,47(4)
  5. Black, F.,Scholes, M. S.(1973).The Pricing of Options and Corporate Liabilities.Journal of Political Economy,81(3)
  6. Cox, J. C.,Ingersoll, J. E.,Ross, S. A.(1985).A Theory of the Term Structure of Interest Rates.Econometrica,53(2)
  7. EI Karoui, N.,Rochet, J. C.(1989).A Pricing Formula for Options on Coupon Bonds.SDEES.
  8. Geman, H.(1989).The Importance of the Forward Neutral Probability in a Stochastic Approach of Interest Rates.ESSEC.
  9. Geman, H.,El Karoui, N.,Rochet, J. C.(1995).Changes of Numeraire, Changes of Probability Measures and Pricing of Options.Journal of Apply Probability,32
  10. Haug, E. G.(1997).The Complete Guide to Option Pricing Formulas.New York:McGraw-Hill Book Co..
  11. Heath, D. C.,Jarrow, R. A.,Morton, A. J.(1992).Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation.Econometrica,60(1)
  12. Heath, D.,Jarrow, R. A.,Morton, A.(1990).Contingent Claim Valuation with a Random Evolution of Interest Rates.Review of Futures Markets,9
  13. Ho, T. S. Y.,Lee, Sang Bin(1986).Term Structure Movements and Pricing Interest Rate Contingent Claims.The Journal of Finance,41(5)
  14. Hull, J.,White, A.(1990).Pricing Interest Rate Derivative Securities.The Review of Financial Studies,3(4)
  15. James, J.,Webber, N.(2000).Interest Rate Modelling.West Sussex, England:John Wiley & Sons, Ltd.
  16. Jamshidian, F.(1987).Pricing of Contingent Claims in the One Factor Term Structure Model.
  17. Musiela, M.,Rutkowski, M.(1998).Martingale Methods in Financial Modelling.Berlin:Springer-Verlag.
  18. Rubinstein, M.(1991).Pay Now, Choose Later.Risk,4(2)
  19. Vasicek, O. A.(1977).An Equilibrium Characterization of the Term Structure.The Journal of Financial Economics,5
  20. Walmsley, J.(1998).New Financial Instruments.New York, N. Y.:John Wiley & Sons, Inc..
  21. Wolfram Research(1999).The Mathematica Book.Champaign, IL:Wolfram Research, Inc..
  22. Zhang, P. G.(1998).Exotic Options: A Guide to Second Generation Options.Singapore:World Scientific Publishing Co..
被引用次数
  1. 魏慧珊、歐仁和、黃志偉、張傳章(2016)。臺灣財務領域研究之回顧與展望。管理學報,33(1),105-137。
  2. 吳庭斌(2008)。隨機利率下匯率連動遠期契約之評價與避險。中國統計學報,46(4),288-308。
  3. 張瑞珍,林士貴,吳宥璇(2019)。考慮違約風險與隨機利率模型下的匯率連結外幣資產選擇權定價。中國統計學報,57(2),120-157。