题名

跳躍擴散與隨機波動模型下台指選擇權之評價-快速傅立葉轉換之應用

并列篇名

Jump Diffusion and Stochastic Volatility Pricing Models of TAIEX Index Options: An Application of Fast Fourier Transform

作者

涂登才(Teng-Tsai Tu);劉祥熹(Hsiang-Hsi Liu)

关键词

跳躍-擴散 ; 隨機波動 ; SVJ模型 ; 蒙地卡羅模擬法 ; 快速傅利葉轉換 ; Jump-diffusion ; Stochastic Volatility ; SVJ Model ; Monte Carlo simulation ; Fast Fourier Transform

期刊名称

管理與系統

卷期/出版年月

19卷2期(2012 / 04 / 01)

页次

201 - 230

内容语文

繁體中文

中文摘要

本文旨在應用快速傅利葉轉換法針對跳躍-擴散、隨機波動及混合模型等修正後選擇權評價模型以選擇權評價誤差模式分別進行其樣本內模型配適度分析與樣本外預測能力分析。實證結果顯示相對於蒙地卡羅模擬法,跳躍-擴散、隨機波動及混合模型等修正後選擇權評價模型為顯著較優之臺指選擇權評價模型。樣本內模型配適度之評價誤差分析方面,其實證結果顯示大抵係以隨機波動模型或混合模型為顯著較優之臺指選擇權評價模型。樣本外預測能力之評價誤差分析方面,1日樣本外預測除次近月選擇權外,整體、近月及遠月選擇權大抵亦以隨機波動模型或混合模型為顯著較優之臺指選擇權評價模型,其中買權與賣權大抵分別以隨機波動模型及混合模型為顯著較優之臺指選擇權評價模型。5日、10日及20日樣本外預測中,買權大抵係以混合模型為顯著相對較優之臺指選擇權評價模型,而賣權則係以隨機波動模型及混合模型為顯著相對較優之臺指選擇權評價模型。

英文摘要

The purpose of this study is to apply fast Fourier transform to investigate in-sample goodness of fit and out-of-sample prediction performance of three modified options pricing models, including jump-diffusion model, stochastic volatility model and stochastic volatility with jump model, through options pricing error analysis. The overall empirical results indicate that three modified options pricing models outperform Monte Carlo simulation method through the analysis of in-sample goodness of fit and out-of-sample prediction performance. The empirical results of in-sample goodness of fit indicate that the stochastic volatility and stochastic volatility with jump models are significantly superior pricing models of TAIEX index options. The empirical results of one-day out-of-sample prediction performance reveal that in addition to next-near-month options contracts, the stochastic volatility and stochastic volatility with jump models also are significantly superior pricing models of TAIEX index options of overall, near-month and far-month options contracts. The stochastic volatility and stochastic volatility with jump models are significantly superior pricing models of TAIEX index options for call and put options, respectively. Finally, the empirical results of five-day, ten-day and twenty-day out-of-sample prediction performance indicate that the stochastic volatility with jump model is significantly superior pricing model of TAIEX index options for calls, while the stochastic volatility and stochastic volatility with jump models are significantly superior pricing models of TAIEX index options for puts.

主题分类 基礎與應用科學 > 統計
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Bachelier, L., "Théorie de la Spéculation," Annales de l'Ecole Normale Supériue III, Vol. 17, 1900, pp. 21-86
  2. Borak, S., Detlefsen, K. and Hardle, W., "FFT Based Option Pricing, Statistical Tools for Finance and Insurance," SFB 649 discussion paper, No. 2005,011, Springer, Berlin, 2004
  3. Ait-Sahalia, Y.(2002).Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-Form Approximation Approach.Econometrica,70(1),223-262.
  4. Andersen, B. G.,Andreasen, J.(2000).Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing.Review of Derivatives Research,4(3),231-262.
  5. Bakshi, G.,Cao, C.,Chen, Z.(1997).Empirical Performance of Alternative Option Pricing Models.Journal of Finance,5(5),2003-2049.
  6. Bates, D.(1996).Jump and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options.Review of Financial Studies,9(9),69-107.
  7. Benhamou, E.(2002).Fast Fourier Transform for Discrete Asian Options.Journal of Computational Finance,6(1),49-61.
  8. Benth, F. E.,Saltyte-Benth, J.(2006).Analytical Approximation for the Price Dynamics of Spark Spread Options.Stud. Nonlinear Dynam. Econometrics,10(3)
  9. Black, F.,Scholes, M.(1973).The Pricing of Options and Corporate Liabilities.Journal of Political Economy,81,637-659.
  10. Broadie, M.,Glassermann, P.,Kou, S. G.(1997).A Continuity Correction for Discrete Barrier Options.Mathematical Finance,7(4),325-348.
  11. Broadie, M.,Kaya, Ȍ.(2006).Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes.Operations Research,54(2),217-231.
  12. Broadie, M.,Kaya, Ȍ.(2004).Exact Simulation of Option Greeks under Stochastic Volatility and Jump Diffusion Models.Proceedings of the 2004 Winter Simulation Conference
  13. Carr, P.,Madan, D.(1999).Option Valuation Using the Fast Fourier Transform.Journal of Computational Finance,2(4),61-73.
  14. Chaudhary, S.(2007).A Simple American Option Pricing Method Using the Fast Fourier Transform.International Journal of Theoretical & Applied Finance,10(7),1191-1202.
  15. Chu, S. H.,Freund, S.(1996).Volatility Estimation for Stock Index Option: A GARCH Approach.The Quarterly Review of Economics and Finance,36(4),431-450.
  16. Cox, J. C.,Ross, S. A.(1976).A Valuation of Options for Alternative Stochastic Processes.Journal of Financial Economics,3(1-2),145-166.
  17. d'' Halluin, Y.,Forsyth, P. A.,Vetzal, K. R.(2005).Robust Numerical Methods for Contingent Claims under Jump Diffusion Processes.Journal of Numerical Analysis,25(1),87-112.
  18. Dempster, M. A. H.,Hong, S. S. G.(2000).Spread Option Valuation and the Fast Fourier Transform.Proceedings of the International Conference on Computational Finance and its Applications
  19. Duffie, D.,Pan, J.,Singleton, K.(2000).Transform Analysis and Asset Pricing for Affine Jump-Diffusions.Econometrica,68(6),1343-1376.
  20. Dumas, B.,Fleming, J.,Whaley, R. E.(1998).Implied Volatility Functions: Empirical Tests.Journal of Finance,53(6),2059-2106.
  21. Eraker, B.(2004).Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices.Journal of Finance,59(3),1367-1403.
  22. Heston, S.(1993).A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.Review of Financial Studies,6(2),327-343.
  23. Hull, J. C.,White, A. D.(1987).The Pricing of Options on Assets with Stochastic Volatilities.Journal of Finance,42(2),281-300.
  24. Lévy, E.(1992).Pricing European Average Rate Currency Options.Journal of International Money and Finance,11(5),474-491.
  25. Madan, D. B.,Carr, P.,Chang, E. C.(1998).The Variance Gamma Process and Option Pricing.European Finance Review,2(1),79-105.
  26. Merton, R.(1976).Option Pricing when Underlying Stock Returns are Discontinuous.Journal of Financial Economics,3(1-2),125-144.
  27. Samuelson, P.(1965).Rational Theory of Warrant Pricing.Industrial Management Review,6,13-31.
  28. Schoutens, W.,Simons, E.,Tistaert, J.(2004).A Perfect Calibration! Now What ?.Wilmott Magazine,March,66-78.
  29. Scott, L. O.(1997).Pricing Stock Options in a Jump-Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods.Mathematical Finance,7(4),413-424.
  30. Walker, J. S.(1991).Fast Fourier Transforms.Boca Raton, Florida:CRC Press, Inc..
被引用次数
  1. 葉仕國、張森林、林丙輝(2016)。台灣衍生性金融商品定價、避險與套利文獻回顧與展望。臺大管理論叢,27(1),255-304。