题名

複合弓比賽成績表現之診斷評量

并列篇名

Diagnostic Assessment of Athletic Performances of Compound Archers During Competition

DOI

10.6162/SRR.202009_(154).0002

作者

吳蕙如(Hui-Ju Wu);游鳳芸(Feng-Yun Yu)

关键词

多層面Rasch測量 ; 潛能 ; 非期望反應 ; 偏差分析 ; many-facet Rasch measurement ; potential ; unexpected response ; deviation analysis

期刊名称

大專體育

卷期/出版年月

154期(2020 / 09 / 30)

页次

12 - 20

内容语文

繁體中文

中文摘要

本研究目的為診斷評量複合弓比賽的成績表現,以國立體育大學複合弓選手10名為研究對象,收集複合弓選手2017年11月起至2019年11月的正式比賽成績,然後以多層面Rasch測量模式評估選手潛能、探查比賽的非期望反應,以選手層面為主,交叉分析個人表現。研究結果顯示:一、優秀選手的非期望反應資料數量不多,無法執行個別選手統計分析,僅做整體的診斷,排名賽和對抗賽在「賽別」、「回合」的分析概似比9.691、13.474,皆未達顯著水準。二、比較複合弓成績表現在排名與對抗賽的非期望反應,結果t值.46未達顯著水準。發現2年的比賽資料仍不足夠,需要更長期的資料累積,在分析的程序上具有科學基礎。本研究所得結論:選手非期望反應分析,方法上是可行,能夠探查出非期望反應及層面交叉的偏差分析,作為診斷評量的依據。

英文摘要

The purpose of this study was to conduct a diagnostic assessment of athletic performances of compound archers during competition. The research subjects of this study were 10 compound archers from the National Taiwan Sport University. The formal competition results of these archers from November 2017 to November 2019 were collected and taken into the many-facet Rasch measurement model to assess the archers' potential, investigate their unexpected responses during competition, and cross-analyze the individual performance by focusing on the archer facet. Results indicated that: (1) The database of unexpected response from the elite archers is not sufficiently large for statistical analysis on each archer, and only group diagnosis can be done. The analytical likelihood ratio of the ranking tournaments and the rivalry tournaments are 9.691 and 13.474, respectively. Neither value met the significance level. (2) Comparing the unexpected response between the ranking tournaments and the rivalry tournaments, the t-value of .46 does not meet the significance level. This indicates that the data from 2 years' competitions is still insufficient, and accumulating long-term data is required before constructing an analysis program on a scientific basis. We conclude that the method to analyze the archers' unexpected responses in this work is feasible. It enables the investigation of unexpected responses and deviation analysis of cross-facets as an effective basis for diagnostic assessment.

主题分类 社會科學 > 體育學
参考文献
  1. 俞克斌, K.-P.,施淑娟, S.-C.,許天維, T.-W.(2012)。高中數學之電腦化適性診斷與學習系統─以矩陣單元為例。測驗統計年刊,20(1),77-113。
    連結:
  2. 姚漢禱, H.-D.,邱炳坤, P.-K.,陳詩園, S.-Y.(2009)。反曲弓射箭競賽項目技術表現分析。測驗統計年刊,17(1),23-38。
    連結:
  3. 許家驊, C.-H.(2016)。國小二步驟四則混合文字題解題歷程技巧學習診斷評量之編製發展與實測分析研究。教育心理學報,48(2),185-209。
    連結:
  4. 陳永銘, Y.-M.,姚漢禱, H.-D.,陸雲鳳, Y. F.(2015)。羽球單打比賽技術多元診斷分析。中原體育學報,6,87-96。
    連結:
  5. 劉育隆, Y.-L.,曾筱倩, S.-C.,郭伯臣, B.-C.(2006)。以知識結構為基礎之適性測驗系統建置。測驗統計年刊,14(2),17-35。
    連結:
  6. American Educational Research Association,American Psychological Association,National Council on Measurement in Education(1999).The standards for educational and psychological testing.Washington, DC:American Psychological Association.
  7. Andrich, D.(1978).A rating formulation for ordered response categories.Psychometrika,43(4),561-574.
  8. English Institute of Sport. (n.d.). Performance analysis. Retrieved from https://www.eis2win.co.uk/service/performance-analysis
  9. Linacre, J. M.(1989).Many-facet Rasch measurement.Chicago, IL:MESA.
  10. Linacre, J. M.(2010).A user’s guide to FACETS: Rasch-model computer programs.Chicago, IL:Winsteps.
  11. Masters, G. N.(1982).A Rasch model for partial credit.Psychometrika,47(2),149-174.
  12. Rasch, G.(1980).Probabilistic models for some intelligence and attainment tests.Chicago, IL:University of Chicago.
  13. 吳蕙如, H.-J.,姚漢禱, H.-D.(2017)。2017 臺北世大運女子複合弓個案研究。國立體育大學實務型研究特刊
  14. 姚漢禱, H.-D.(2014)。,臺北市=Taipei, Taiwan:科技部=Ministry of Science and Technology。