题名

運動後氧氣供應對肝醣回補之影響

并列篇名

Effect of Oxygen Supply on Glycogen Recovery and AMPK Protein Expression in Post-Exercise

DOI

10.5297/ser.1404.009

作者

李文志(Wen-Chih Lee);張惟翔(Wei-Hsiang Chang);侯建文(Chien-Wen Hou);徐欣億(Hsin-Yi Hsu)

关键词

運動恢復期 ; 常壓高氧 ; 常壓低氧 ; oxygen concentration recovery ; normobaric hyperoxia ; normobaric hypoxia

期刊名称

大專體育學刊

卷期/出版年月

14卷4期(2012 / 12 / 31)

页次

483 - 491

内容语文

繁體中文;英文

中文摘要

本研究目的是以動物模式探討運動後不同氧氣濃度下恢復1小時,對不同組織肝醣回補情形與肌肉AMPK蛋白質表現之影響。研究方法是以48隻Sprague Dawley 鼠(體重約250公克)為試驗對象,試驗設計分成無運動常氧組、無運動低氧組、無運動高氧組、運動常氧組、運動低氧組、運動高氧組等6組。運動組老鼠在水溫34℃下,連續游泳運動3小時後,於高氧(FIO2 = 83%)、常氧(FIO2 = 21%)及低氧(FIO2 =14%)等不同氧氣濃度下恢復1小時。運動及恢復後測量血糖及胰島素,犧牲後分析老鼠心肌、肝臟、股四頭紅肌、白肌的肝醣含量、AMPK及磷酸化AMPK蛋白質表現量。研究結果顯示在恢復1小時後運動組血糖恢復至與無運動組相同,恢復後胰島素各組之間無差異。不同氧氣濃度恢復對各組織肝醣的影響,運動組心肌肝醣明顯較無運動組高,肝臟肝醣則是各組無差異。股四頭白肌之肝醣,運動組明顯較無運動組低,而運動組中低氧組之肝醣明顯高於常氧組。股四頭紅肌之肝醣,高氧運動組明顯較無運動組低,而運動低氧組明顯高於運動高氧組。總AMPK表現量在白肌中,各組無明顯差異,磷酸化AMPK在白肌中,則是運動高氧組明顯較高於運動低氧組。研究結論是運動恢復期各組織中,以心肌肝醣回補最快,而低氧在運動恢復期對肝醣回補效果較佳,而AMPK路徑不是影響低氧肝醣回補的關鍵。

英文摘要

The purpose of this study was to investigate the glycogen restoration and AMPK protein expression in post-exercised rats under recovery with different oxygen concentrations. Forty-eight Sprague Dawley rats (weighing 250 grams) were divided into exercise and non-exercise groups (control) and recovered under normobaric, normobaric-hypoxia (FIO2 = 14%) and normobaric-hyperoxia (FIO2 = 83%) conditions. In exercise groups rats were allowed to swim for 3-h continuously, and then recovered for 1-h under three different oxygen concentrations. After recovery the blood glucose levels were not significantly altered between exercise and non-exercise groups. Insulin levels were similar with blood glucose levels during recovery. The glycogen content in cardiac muscle was significantly increased in exercise groups compared to non-exercise groups after recovery, but no difference in liver glycogen between exercise and non-exercise groups. On the other hand, white quadriceps glycogen content was significantly decreased in exercise group, but restoration of glycogen under hypoxia recovery was higher than hyperoxia recovery in exercise group. Interestingly, the glycogen restoration in red quadriceps was similar with white quadriceps. The total AMPK protein expression was no difference between exercise and non-exercise groups; however, the phosphorylated AMPK protein was higher in hyperoxia than hypoxia in white quadriceps. Our findings conclude that the restoration of glycogen in cardiac muscle was taken into first priority than the other tissues. Furthermore, normobaric hypoxia condition would be helpful for the glycogen restoration in muscle after exercise, and AMPK signal pathway may not be the key factor for glycogen restoration in rats.

主题分类 社會科學 > 體育學
参考文献
  1. Akermark, C.,Jacobs, I.,Rasmusson, M.,Karlsson, J.(1996).Diet and muscle glycogen concentration in relation to physical performance in Swedish elite ice hockey players.Internationl Journal of Sport Nutrition,6(3),272-284.
  2. A-Marlik, R.,Scott, N. A.(2001).Double near and far prolene suture closure: A technique for abdominal wall closure after laparostomy.British Journal of Surgery,88(1),146-147.
  3. Denko, N. C.(2008).Hypoxia, HIF1 and glucose metabolism in the solid tumour.Natural Review Cancer,8(9),705-713.
  4. Eiken, O.,Hesser, C. M.,Lind, F.,Thorsson, A.,Tesch, P. A.(1987).Human skeletal muscle function and metabolism during intense exercise at high O2 and N2 pressures.Journal of Applied Physiology,63(2),571-575.
  5. Fisher, J. S.,Nolte, L. A.,Kawanaka, K.,Han, D.-H.,Jones, T. E.,Holloszy, J. O.(2002).Glucose transport rate and glycogen synthase activity both limit skeletal muscle glycogen accumulation.American Journal of Physiology Endocrinology and Metabolism,282(6),E1214-E1221.
  6. Gaesser, G. A.,Brooks, G. A.(1980).Glycogen repletion following continuous and intermittent exercise to exhaustion.Journal of Applied Physiology,49(4),722-728.
  7. Gleadle, J. M.,Ratcliffe, P. J.(1997).Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: Evidence against a regulatory role for Src kinase.Blood,89(2),503-509.
  8. Goldfarb, A. H.,Bruno, J. F.,Buckenmeyer, P. J.(1986).Intensity and duration effects of exercise on heart cAMP, phosphorylase, and glycogen.Journal of Applied Physiology,60(4),1268-1273.
  9. Ivy, J. L.(1999).Role of carbohydrate in physical activity.Clinical in Sports Medicine,18(3),469-484.
  10. Jansson, E.,Sylvén, C.(1986).Activities of key enzymes in the energy metabolism of human myocardial and skeletal muscle.Clinical Physiology,6(5),465-471.
  11. Kemppainen, J.,Fujimoto, T.,Kalliokoski, K. K.,Viljanen, T.,Nuutila, P.,Knuuti, J.(2002).Myocardial and skeletal muscle glucose uptake during exercise in humans.The Journal of Physiology,542,403-412.
  12. Kuo, C. H.,Browning, K. S.,Ivy, J. L.(1999).Regulation of GLUT4 protein expression and glycogen storage after prolonged exercise.Acta Physiologica Scandinavica,165(2),193-201.
  13. Maeda, T.,Yasukouchi, A.(1998).Blood lactate disappearance during breathing hyperoxic gas after exercise in two different physical fitness groups-On the workload fixed at 130% AT.Applied Human Science,17(2),33-40.
  14. Mamedova, L. K.,Shneyvays, V.,Katz, A.,Shainberg, A.(2003).Mechanism of glycogen supercompensation in rat skeletal muscle cultures.Molecular Cell Biochemistry,250(1-2),11-19.
  15. Markuns, J. F.,Wojtaszewski, J. F.,Goodyear, L. J.(1999).Insulin and exercise decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal muscle.Journal of Biological Chemistry,274(35),24896-24900.
  16. Mu, J.,Brozinick, J. T., Jr.,Valladares, O.,Bucan, M.,Birnbaum, M. J.(2001).A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle.Molecular Cell,7(5),1085-1094.
  17. Nummela, A.,Hämäläinen, I.,Rusko, H.(2002).Effect of hyperoxia on metabolic responses and recovery in intermittent exercise.Scandinavian Journal of Medicineand Science in Sports,12(5),309-315.
  18. Passonneau, J. V.,Lauderdale, V. R.(1974).A comparison of three methods of glycogen measurement in tissues.Analytical Biochemistry,60(2),405-412.
  19. Pescador, N.,Villar, D.,Cifuentes, D.,Garcia-Rocha, M.,Ortiz-Barahona, A.,Vazquez, S.(2010).Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1.PLoS One,5(3),e9644.
  20. Price, T. B.,Rothman, D. L.,Taylor, R.,Avison, M. J.,Shulman, G. I.,Shulman, R. G.(1994).Human muscle glycogen resynthesis after exercise: Insulin-dependent and -independent phases.Journal of Applied Physiology,76(1),104-111.
  21. Reynolds, T. H., IV,Brozinick, J. T., Jr.,Rogers, M. A.,Cushman, S. W.(1998).Mechanism of hypoxia-stimulated glucose transport in rat skeletal muscle: Potential role of glycogen.American Journal of Physiology,274(5),E773-E778.
  22. Romijn, J. A.,Coyle, E. F.,Sidossis, L. S.,Gastaldelli, A.,Horowitz, J. F.,Endert, E.(1993).Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration.American Journal of Physiology,265(3),E380-E391.
  23. Shen, G. M.,Zhang, F. L.,Liu, X. L.,Zhang, J. W.(2010).Hypoxia-inducible factor 1-mediated regulation of PPP1R3C promotes glycogen accumulation in human MCF-7 cells under hypoxia.FEBS Letters,584(20),4366-4372.
  24. Stellingwerff, T.,Glazier, L.,Watt, M. J.,LeBlanc, P. J.,Heigenhauser, G. J.,Spriet, L. L.(2005).Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise.Journalof Applied Physiology,98(1),250-256.
  25. Winder, W. W.(2001).Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle.Journal of Applied Physiology,91(3),1017-1028.
  26. Wojtaszewski, J. F.,Nielsen, J. N.,Richter, E. A.(2002).Invited review: Effect of acute exercise on insulin signaling and action in humans.Journal of Applied Physiology,93(1),384-392.
  27. Wojtaszewski, J. F.,Richter, E. A.(2006).Effects of acute exercise and training on insulin action and sensitivity: Focus on molecular mechanisms in muscle.Essays Biochemistry,42,31-46.