题名

以行為狀態變遷為基礎之線上拍賣詐騙偵測方法

并列篇名

An Online Auction Early Fraud Detection Method Based on Behavioral Status Transition of Traders

作者

張昭憲(Jau-Shien Chang);莊秉諺(Bing-Yan Jhuang)

关键词

詐騙偵測 ; 網路詐騙 ; 線上拍賣 ; 資料探勘 ; 電子商務 ; fraud detection ; internet fraud ; online auction ; data mining ; e-commerce

期刊名称

資訊管理學報

卷期/出版年月

24卷1期(2017 / 01 / 01)

页次

97 - 130

内容语文

繁體中文

中文摘要

近年來,線上拍賣的蓬勃發展有目共睹。線上拍賣交易兼具便利性與隱蔽性,且不受時間與空間的限制,使得交易量逐年顯著提升。然而,面對如此蓬勃的交易平台,許多詐騙者開始混雜其中,謀取不法利益。詐騙的方式不但多樣化,且經常隨著時間、環境改變,令人防不勝防。為了協助交易者早期發現詐騙陷阱,避免蒙受不必要的損失,本研究以行為狀態分析為基礎,發展了一套線上拍賣詐騙偵測與預警方法。首先,針對詐騙者及正常者的交易記錄進行時序切割,再對其特徵值向量進行分群,以歸納出典型的交易者狀態。而後,針對資料集中所有的交易歷史進行狀態變遷切割,以產生與時序行為相關的偵測模型。在此同時,我們也利用狀態切割後的資料集,製作狀態標籤字串,並產生循序樣式,供使用者比對、監控可疑帳號。根據上述方法,本研究實作了一套簡易的線上拍賣交易輔助系統,輔助使用者在交易前觀察、分析交易對象的行為。為了驗證提出方法之有效性,本研究使用拍賣網站實際交易資料進行實驗,結果顯示本研究提出之方法確實有助於提升詐騙偵測之準確性與預警能力。

英文摘要

Purpose- The fraudsters' strategies of online auctions are diverse and changing rapidly. It results in the difficulty of fraud detection and prevention. The purpose of this paper is to develop effective methods to help discovering online auction fraud as early as possible. Design/methodology/approach- This paper develops effective detection methods based on behavioral state transition of fraudsters. First, we partition and duplicate the transaction histories of traders according to trading events. Then, a reduction method based on state transition is developed to reduce the size of data set, which is then used to build the detection model. In addition, the state label strings are used to conduct the behavioral patterns of suspects for monitoring. Findings- To demonstrate the effectiveness of the proposed methods, real transaction data are gathered from online auction sites for experiments. The results show that our methods do increase the detection accuracy and demonstrate that the early fraud detection by behavioral monitoring is possible. Research limitations/implications- The limitations of this work is that the proposed method could be ineffective for the fraudsters who steal or buy other normal accounts for disguise. Albeit being difficult, it is still possible to discover them by monitoring their behavioral changes in some critical time point. Certainly, it needs newly-developed detection methods. Practical implications- If the developed methods can be implemented and incorporated into the routine tasks of real online auction sites, the efforts of monitoring abnormal traders can be greatly reduced and the cost of maintaining a smooth trading environment can drop significantly. As a result, the fraud events will be effectively suppressing and the users will have more confidence in trading with online auctions. Originality/value- To apply state transition concept to detect latent fraudsters, which extends intuitive decision tree and other learning models to more complicated time-based analysis. Thus, based on the proposed novel approaches, new methods can be developed to discover more well-camouflaged fraudsters.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. 王俊程、邱垂鎮、葛煥元(2005)。以交易記錄的社會網絡結構建立線上拍賣哄抬評價的偵測指標。資訊管理學報,12(4),143-184。
    連結:
  2. National White Collar Crime Center(NW3C) (2009) , '2008 Internet Crime Report', available at http://www.ic3.gov/media/annualreport/2008_IC3Report.pdf (accessed 1 May 2014)
  3. eBay Inc. (1995), 'How Feedback works' , available at http://pages.ebay.com/help/feedback/howitworks.html (accessed 30 December 2016 ).
  4. eBay Inc. (2013), '2013 Quarterly Report ', available at http://investor.ebay.com/annuals.cfm (accessed 1 December 2013).
  5. National White Collar Crime Center (NW3C) (2011), '2010 Internet Crime Report', Internet Crime Complaint Center, available at http://www.ic3.gov/media/annualreport/2010_IC3Report.pdf (accessed 1 May 2014)
  6. DJ Project (2014), 'Java Web Browser', available at http://djproject.sourceforge.net/ns/ (accessed 1 May 2014).
  7. National White Collar Crime Center(NW3C) (2012), '2011 Internet Crime Report', Internet Crime Complaint Center, available at http://www.ic3.gov/media/annualreport/2011_IC3Report.pdf (accessed 1 May 2014)
  8. Weka (2014),'Weka 3 - Data Mining with Open Source Machine Learning Software in Java', available at http://www.cs.waikato.ac.nz/ml/weka (accessed 1 May 2014).
  9. Agrawal, R.,Srikant, R.(1996).Mining Sequential Patterns: Generalizations and Performance improvements.Proceedings of the 5th Int. Conf. Extending Database Technology, EDBT, London, UK, March 25 - 29
  10. Agrawal, R.,Srikant, R.(1995).Mining Sequential Patterns.Proceedings of International Conference on Data Engineering,Taipei, Taiwan:
  11. Brown, D.E.,Oxford, R.B.(2001).Data Mining Time Series with Applications to Crime Analysis.Proceeding of the 2001 IEEE conference, Tucson, Arizona, USA., Oct.7-10
  12. Chandola, V.,Banerjee, A.,Kumar, V.(2009).Anomaly Detection: A Survey.ACM Computing Surveys,41(3)
  13. Chang, J.S.,Chang, W.H.(2009).An Early Fraud Detection Mechanism for Online Auctions Based on Phased Modeling.Proceeding the 2009 International Workshop on Mobile Systems E-commerce and Agent Technology (MSEAT 2009), Taipei, Taiwan, December 3-5
  14. Chang, J.S.,Wong, H.J.(2011).Selecting appropriate sellers in online auctions through a multi-attribute reputation calculation method.Electronic Commerce Research and Applications,10(2),144-154.
  15. Chang, W.,Chang, J.(2011).A Novel Two-Stage Phased Modeling Framework for Early Fraud Detection in Online Auctions.Expert System with Applications,38(9),11244-11260.
  16. Chang, W.H.,Chang, J.S.(2010).A Multiple-Phased Modeling Method to Identify Potential Fraudsters in Online Auctions.Proceedings of the 2nd International Conference on Computer Research and Development (ICCRD 2010), Kuala Lumpur, Malaysia., May 7-10
  17. Chang, W.H.,Chang, J.S.(2010).An Online Auction Fraud Screening Mechanism for Choosing Trading Partners.Proceeding of 2010 the 2nd International Conference on Education Technology and Computer (ICIEE 2010), Shanghai, China, June 22-24
  18. Chang, W.H.,Chang, J.S.(2012).An Effective Early Fraud Detection Method for Online Auctions.Electronic Commerce Research and Applications,11(4),346-360.
  19. Chau, D.,Pandit, S.,Faloutsos, C.(2006).Detecting Fraudulent Personalities in Networks of Online Auctioneers.Proceedings of the 10th European conference on Principle and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18-22
  20. Chau, D.H.,Faloutsos, C.(2005).Fraud Detection in Electronic Auction.Proceedings of European Web Mining Forum (EWMF 2005) at ECML/PKDD 2005, Porto, Portugal, October 3-7
  21. Chua, C.E.,Wareham, J.(2004).Fighting Internet Auction Fraud: An Assessment and Proposal.Computer,37(10),31-37.
  22. Fawcett, T.,Provost, F.(1999).Activity monitoring: noticing interesting changes in behavior.Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Diego, California, USA:
  23. Gavish, B.,Tucci, C.(2008).Reducing Internet Auction Fraud.Communications of the ACM,51(5),89-97.
  24. Goes, P.,Tu, Y.,Tung, A.(2009).Online Auctions Hidden Metrics.Communications of the ACM,52(4),147-149.
  25. Ishioka, T.(2005).An expansion of x-means for automatically determining the optimal number of clusters-progressive iterations of k-means and merging of the clusters.Proceedings of fourth IASTED international conference computational intelleigence,Calgery, Alberta, Canada:
  26. Kaszuba, T.,Hupa, A.,Wierzbicki, A.(2010).Advanced Feedback Management for Internet Auction Reputation Systems.IEEE Internet Computing,14(5),31-37.
  27. Kobayashi, M.,Ito, T.(2007).A transactional relationship visualization system in internet auctions.IEEE Computer Society,248-251.
  28. Kobayashi, M.,Ito, T.(2008).A Transactional Relationship Visualization System in Internet Auctions.Electronic Commerce - Studies in Computational Intelligence,110,87-99.
  29. Levenshtein, V.I.(1965).Binary codes capable of correcting deletions, insertions, and reversals.Soviet Physics Dokl.,10,707-710.
  30. Pandit, S.,Chau, D.,Wang, S.,Faloutsos, C.(2007).Netprobe: a fast and scalable system for fraud detection in online auction networks.Proceedings of the 16th international conference on World Wide Web, Banff, Alberta, Canada, May 8-12
  31. Pavlou, P.,Dimoka, A.(2006).The nature and role of feedback text comments in online marketplaces: implications for trust building, price premiums, and seller differentiation.Information Systems Research,17(4),392-414.
  32. Pei, J.(2001).PrefixSpan: Mining sequential patterns efficiently by prefixprojected pattern growth.Proceedings of Int. Conf. Data Engineering (ICDE '01), Heidelberg, Germany, April 2-6
  33. Pei, J.,Han, J.,Wang, W.(2002).Mining Sequential Patterns with Constraints in Large Databases.Proceedings of the eleventh international conference on Information and knowledge management, McLean, Virginia, USA, Nov. 4-9
  34. Pelleg, D.,Moore, A.(2000).X-means: Extending K-means with Efficient Estimation of the Number of Clusters.Proceedings of the 17th International Conference on Machine Learning, San Francisco, CA, USA, June 29-July 2
  35. Quinlan, J.R.(1993).C4.5 Programs for machine learning.San Francisco, CA, USA:Morgan Kaufmann.
  36. Quinlan, J.R.(1986).Induction of Decision Trees.Machine Learning,1(1),81-106.
  37. Schmidt, S.,Steele, R.,Dillon, T.,Chang, E.(2007).Fuzzy trust evaluation and credibility development in multi-agent systems.Applied Soft Computing,7(2),492-505.
  38. Selvaraj, C.,Anand, S.(2012).A Survey on Security Issues of reputation Management Systems for Peer-to-Peer Networks.Computer Science Review,6,145-160.
  39. Sherchan, Wanita,Nepal, Surya,Paris, C.(2013).A Survey of Trust in Social Networks.ACM Computing Survey,45(4)
  40. Tavakolifard, M.,Almeroth, K.C.(2012).Social Computing: An Intersection of recommender Systems, Trust/Reputation Systems, and Social Network.IEEE Network,26(4),53-58.
  41. Wang, J.,Chiu, C.(2005).Detecting Online Auction Inflated-Reputation Behaviors using Social Network Analysis.Proceedings of NAACSOS Conference, Indiana, USA, June 26-28
  42. Witten, I.,Frank, E.(2005).Data mining: practical machine learning tools and techniques.San Francisco, CA, USA:Mogan Kaufmann.
  43. Yu, L.,Liu, H.(2004).Efficient Feature Selection via Analysis of Relevance and Redundancy.Journal of Machine Learning Research,5,1205-1224.
  44. Zhang, B.,Zhou, Y.,Faloutsos, C.(2008).Toward a comprehensive model in Internet auction fraud detection.Proceedings of the 41st Annual Hawaii International Conference on System Science, Waikoloa, USA, Jan 7-10