题名

History and Potential of Binary Segmentation for Exploratory Data Analysis

DOI

10.6339/JDS.2005.03(2).198

作者

James N. Morgan

关键词

Decision trees ; interaction detection ; sequential binary segmentation

期刊名称

Journal of Data Science

卷期/出版年月

3卷2期(2005 / 04 / 01)

页次

123 - 136

内容语文

英文

英文摘要

Exploratory data analysis has become more important as large rich data sets become available, with many explanatory variables representing competing theoretical constructs. The restrictive assumptions of linearity and additivity of effects as in regression are no longer necessary to save degrees of freedom. Where there is a clear criterion (dependent) variable or classification, sequential binary segmentation (tree) programs are being used. We explain why, using the current enhanced version (SEARCH) of the original Automatic Interaction Detector program as an illustration. Even the simple example uncovers an interaction that might well have been missed with the usual multivariate regression. We then suggest some promising uses and provide one simple example.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
被引用次数
  1. 廖玟柔(2017)。運用類神經網路建構台股指數期貨預測模型。中原大學資訊管理學系學位論文。2017。1-110。 
  2. 林士超(2017)。PMN-PT微型壓電能量擷取器之製作及其厚膜製程最佳化之研究。國立臺灣大學工程科學及海洋工程學系學位論文。2017。1-79。 
  3. 陳昭廷(2016)。高效能微型能量擷取器之研製與工作模態最佳化研究。國立臺灣大學工程科學及海洋工程學系學位論文。2016。1-90。 
  4. 江啟賓(2016)。基於誘捕系統日誌相似度全球殭屍網路特徵分析之研究。成功大學電腦與通信工程研究所學位論文。2016。1-78。