题名 |
企業危機預警模式之研究-DEA-DA、邏輯斯迴歸與類神經網路之應用 |
并列篇名 |
A study on Prediction Models of Financial Distress-A comparison of DEA-DA、Neural Network and Logistic Regression |
DOI |
10.30139/JACG.200706.0002 |
作者 |
林淑萍(Shu-Ping Lin);黃劭彥(Shiao-Yan Hwang);蔡昆霖(Kuen-Lin Tsai) |
关键词 |
財務危機 ; 預警模式 ; DEA-DA ; 邏輯斯迴歸 ; 類神經網路 ; Financial distress ; Prediction model ; DEA-DA ; Logistic regression ; Neural network |
期刊名称 |
會計與公司治理 |
卷期/出版年月 |
4卷1期(2007 / 06 / 01) |
页次 |
35 - 56 |
内容语文 |
繁體中文 |
中文摘要 |
為有效建立企業之危機預警模式,本研究利用過去相關文獻常用之財務指標(包含應收帳款週轉率、流動比率、每股盈餘與負債比率),以DEA-DA、邏輯斯迴歸與類神經網路等三種不同之研究方法,來比較其判別正確率與預測正確率。研究結果發現三種方法所建立的預測模式,其判別正確率與預測正確率均達80%以上,其中邏輯斯迴歸判別之敏感度僅為33.3%,但精確度為100%,而DEA-DA及類神經網路之敏感度均達60%以上,精確度均超過85%。 |
英文摘要 |
In this paper, we first survey the relative literatures to find the financial indicators. And then we use the methods of DEA-DA、neural network and logistic regression by the financial indicators to establish the prediction models of financial distress. In the main results, we discover that the hit rates of these three models are at least 80%. Furthermore, the sensitivity is 33.3% and the specificity is 100% for the logistic regression model. The sensitivity is more than 60% and the specificity are more than 60% and the specificity are more than 85% for the DEA-DA and neural network models. |
主题分类 |
社會科學 >
財金及會計學 社會科學 > 管理學 |
参考文献 |
|
被引用次数 |