题名

專利題目擬訂推薦電腦輔助方法與系統

并列篇名

Patent Title Develop Recommending Computer-Aided Method And System

作者

郭建明(Kuo Chien-Min);蘇冠維(Su Kuan-Wei)

关键词

專利檢索 ; 本體論 ; 專利題目 ; 智慧財產 ; R語言 ; 自然語言 ; TF-IDF ; Patent Search ; Ontology ; Patent Title ; Intellectual Property ; R Language ; Natural Language Processing ; TF-IDF

期刊名称

資訊與管理科學

卷期/出版年月

12卷1期(2019 / 07 / 01)

页次

45 - 72

内容语文

繁體中文

中文摘要

由於資訊科技的快速發展下,知識透過資訊在全球化下快速的擴散,現今全球各地的企業公司正朝向知識與研發密集化的趨勢逐漸發展,而這些的知識與研發密集化的企業公司之發展攸關一個國家的經濟、科技政策,並非一家或少數幾家企業所能獨力推展,都是需要透過國家以整體力量在政策上來給予協助。而透過上述知識與研發所衍生的經濟價值,將成為技術的創新與研發的主要核心要素,在專利市場上的佈局策略與智慧財產所衍生出來的價值應用將成為最關鍵性的角色。本系統最主要的目標為透過大量的專利資料庫、詞典本體論知識庫的建置,並藉由語意網與運用R語言-自然語言處理:關鍵詞提取(TF-IDF)來作詞頻分析,以達到能根據使用者對於專利上的需求來產生相對應的專利文件名稱。並運用權重技術針對專利內容進行文字探勘後,將其進行分析詞彙的重要性,再運用這些詞彙建置詞典本體論,運用在本系統的關鍵字擴展,當使用者透過輸入的關鍵字後,本系統會將輸入的關鍵字組合處理透過權重的排序,給於使用者推廌,以達到能根據使用者對於專利上的需求來產生相對應的專利文件名稱。且本系統透過原專利的題目來做驗證,驗證後超過6成的相似度,所以本系統是能夠透過分析來幫助使用者理解知識的內容。

英文摘要

With the rapid development of information technology, knowledge is spreading rapidly through the globalization of information. Today's companies around the world are moving towards the trend of knowledge and R&D (research and development) intensity. This knowledge and the development of intensive corporate companies may affect a country's economic, scientific and technological policies. It is not the one or some companies that can carry out by their own efforts. It is necessary to provide assistance through the government's overall strength in policy. However, through the above-mentioned knowledge and the economic value generated by R&D., it will become the main core element of technology innovation and R&D. The layout strategy in the patent market and the application of value generated by intellectual property will become the most critical role. The main goal of this system is to build a large scale of patent database and dictionary ontology knowledge base. And through the semantic network and the use of R language-natural language's keyword extraction (TF-IDF) for word frequency analysis, a corresponding patent title can be generated according to the users' demand for their patents. After using the weighting technology to conduct a text search on the patent content, we analyze the importance of the vocabulary and then use these words to build the dictionary ontology. In the use of the system's keyword extension and users' input of keywords, the system will process the input keyword combination through the weight sorting and then give the user a list of recommended title. This can meet the system users' demand to generate the corresponding patent title. The system was verified by the title of the previous published patent. It has more than 60% similarity after verification. Therefore, this system is a useful tool that can help users understand knowledge and generate suitable patent title through computer-aided analysis.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. 賴奎魁,吳曉君(2005)。建立產業專利分類系統-共同引証分析的觀點。管理學報,22(2),261-277。
    連結:
  2. 機器學習算法與 Python 學習(博客) (2017),自然语言处理(3)之词频-逆文本词频(TF-IDF)详解。檢自 https://blog.csdn.net/Mbx8X9u/article/details/78851815 (December20,2019)
  3. SiC CMP Patent Analysis Model. Retrieved from http://rstudio-pubs-static.s3. amazonaws. com/284118ae1d54379fcc41ad913fbe52e186f856.html
  4. Adamson, I. L.,Dilts, D. M.(1995).Development of an accounting object model from accounting transactions.Journal of Information Systems,9(1),43-64.
  5. Allen, G. N.,March, S. T.(2012).A research note on representing part-whole relations in conceptual modeling.MIS Quarterly,36(3),945-964.
  6. AN-YSYS, (2018),fuseki----在線運行、上傳數據、查詢。檢自 https://blog.csdn.net/fbsxghvudk/article/details/80587507 (June5,2018)
  7. Batovski, Dobri(2014).A Review of The Global Innovation Index 2014: The Human Factor in Innovation (Editors: Soumitra Dutta, Bruno L2anvin and SachaWunsch-Vincent).AUJ.T,18(1),48-52.
  8. Berners-Lee, Tim,Handler, James,Lissila, Ora(2001).Beware the Hype Semantic Web.Scientific American,284(5),45-56.
  9. Blums, I.,Weigand, H.(2016).Towards a reference ontology of complex economic exchanges for accounting information systems.Proceedings of 2016 IEEE 20th International Enterprise Distributed Object Computing Conference,Vienna, Austria:
  10. Burton-Jones, A.,Wand, Y.(2011).Guidelines for designing visual ontologies to support knowledge identification.MIS Quarterly,35(4),883-908.
  11. DCMI. (1999). Dublin Core Metadata Initiative, Dublin Core Metadata Element Set, Version 1.1. Retrieved fromhttp://www.dublincore.org/specifications/dublincore/dces/1999-07-02(July 4,2017)
  12. Ding, Y.(2005).Ontology: The Enabler for the Semantic Web.Amsterdam:Division of Mathematics and Computer Science Free University.
  13. Granstrand, Ove(1999).The Economics and Management of Intellectual Property: Towards Intellectual Capitalism.Cheltenham, UK:Edward Elgar.
  14. Brian Heater. (2019).Windows 10 tops Windows 7 as most popular OS. Retrieved from https://techcrunch.com/2019/01/02/windows-10-tops-windows-7-as-most-popular-os (January 1,2019)
  15. Hendler, J.(2001).Agents and the Semantic Web.IEEE,16(2),30-37.
  16. David Huang, (2017),文件探勘 TF-IDF 演算法:快速計算單字與文章的關聯。檢自https://taweihuang.hpd.io/2017/03/01/tfidf/ (March 1,2017)
  17. Jacob, E. K.(2003).Ontologies and the Semantic Web.Bulletin of the American Society for Information Science and Technology,29(4)
  18. Jlan, (2017),TF-IDF(詞頻-逆文檔頻率)介紹-簡書)。檢自 https://www.jianshu.com/p/b2c4ee414fac (June 3,2017)
  19. Marja-RiittaKoivunen and Eric Miller.(2011).W3C,Retrievedfrom https://www.w3.org/2001/12/semweb-fin/w3csw (November2,2001)
  20. Lionel 的博客 (2016),自然語言處理系列之 TF-IDF 算法。簡自 https://blog.csdn.net/lionel_fengj/article/details/53699903 (December 16,2017)
  21. Mogee, M.E.(1991).Using patent data for technology analysis and planning.Research Technology Management,34(4),43-49.
  22. STHDA. (2007).Text mining and word cloud fundamentals in R : 5 simple steps you should know, Retrieved from http://www.sthda.com/english/wiki/ text-mining-and-word-cloud-fundamentals-in-r-5-simple-steps-you-should-know#step-5-generate-the-word-cloud (June 18,2007)
  23. Wibruce (2018),輕鬆理解 TF-IDF 原理及應用。檢自 https://blog.csdn.net/lionel_fengj/ article/details/53699903 (August 09,2018)
  24. WIPO(2017).World Intellectual Property Indicators 2017.Switzerland:World Intellectual Property Organization.
  25. 天善智能 (2019),R 語言自然語言處理:關鍵詞提取(TF-IDF)。檢自https://kknews.cc/tech/83arxpg.html (March 15,2019)
  26. 江舜絃(2009)。中壢市,國立中央大學資訊管理研究所。
  27. 吳漢銘,國立臺北大學-統計學系,文字探勘與文字視覺化。檢自http://www.hmwu.idv.tw/web/R/%E4%B8%96%E6%96%B0/G02-hmwu_R-TextMining.pdf。
  28. 李淑蓮 (2016),《國家智財戰略綱領》下階段工作重點出爐,然後呢?,北美智權報,164 期。檢自 http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Industry_Economy/IPNC_160727_0701.htm (July7,2016)
  29. 李淑蓮 (2017),沒有智財戰略的產業創新政策要如何贏?,北美智權報,198 期。檢自 http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Industry_Economy/IPNC_171115_0701.htm (November 15,2017)
  30. 阮一峰 (2013),TF-IDF 與餘弦相似性的應用(二):找出相似文章。檢自http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.html (March21,2013)
  31. 翁千婷(2011)。WWW 開放之路。科學人雜誌,109,88-93。
  32. 陳昭珍(2006)。以知識本體架構與知識組織發展新趨勢。數位時代圖書館館藏發展研討會論文集
  33. 臺灣大學計資中心電子報(2014),文字探勘之前處理與 TF-IDF 介紹,第 31 期,檢自http://www.cc.ntu.edu.tw/chinese/epaper/0031/20141220_3103.html(December12,2014)