题名 |
建構兩階段多目標之類免疫支援向量廻歸模式於股價預測 |
并列篇名 |
A Two-Stage Multi-Objective Artificial Immune System-Based Support Vector Regression Model for Stock Index Prediction |
DOI |
10.6338/JDA.201510_10(5).0001 |
作者 |
邱志洲(Chih-Chou Chiu);蔡易潤(Yi-Jun Tsai);呂奇傑(Chi-Jie Lu) |
关键词 |
股價預測 ; 人工類免疫系統 ; 支援向量迴歸 ; 多目標最佳化 ; Stock index prediction ; artificial immune system ; support vector regression ; multi-objective optimization |
期刊名称 |
Journal of Data Analysis |
卷期/出版年月 |
10卷5期(2015 / 10 / 01) |
页次 |
1 - 30 |
内容语文 |
繁體中文 |
中文摘要 |
由於眾多金融商品的價格波動都與股價指數漲跌有高度的關聯性,因此股價指數預測一直是財務時間序列預測領域最重要的議題之一。本研究基於人工類免疫系統(artificial immune system, AIS)與支援向量迴歸(support vector regression, SVR)提出一個兩階段多目標之類免疫支援向量迴歸模式(artificial Immune System-based support vector regression, AIS2VR)於股價預測。AIS是一個受免疫學啟發,並透過模仿免疫功能、原則和模式來解決最佳化問題的自我適應系統;SVR是一個以統計學習理論為基礎的預測技術。所提方法主要是藉著AIS來協助SVR快速地進行參數最佳化設置,同時基於AIS具有記憶區的特性,以兩階段多目標的方式搜尋SVR參數,使建構之股價預測模式能兼顧最小化數值預測誤差和最大化漲跌方向預測正確率,進而增加SVR於股價資料預測的精準度。本研究以台灣股市、香港股市與美國道瓊等三個股票市場的收盤價為實證標的,將所提方法與三個單階段預測模式及網格搜尋法進行比較。結果顯示,所提的AIS2VR兩階段多目標模式的預測誤差低於其他三個單階段的方法以及網格搜尋法,並且方向預測正確率明顯較高,代表所提方法可以確保在較低的數值預測誤差下,提升對股市漲跌方向預測的正確率。 |
英文摘要 |
Stock index is one of the most important research issues in financial time series forecasting since its variation affects the prices of financial products. In this study, a two stage multi-objective artificial immune system-based support vector regression model (called AIS2VR) is proposed for stock index prediction. Artificial immune system (AIS) is a computational problem solving method inspired by metaphors of the natural immune system immune system. Support vector regression (SVR) is a machine learning forecasting tool based on statistical learning theory and structural risk minimization principle. In the proposed model, the AIS algorithm based a two stage scheme and multi-objective principle is applied to optimize the parameters of the SVR prediction model since the parameters of SVR must be carefully selected in establishing an effective and efficient SVR model. In order to evaluate the performance of the proposed AIS2VR approach, the closing indexes of the Taiwan stock exchange capitalization weighted stock index (TAIEX), Dow Jones index (DJI) of U.S. and Heng Seng index (HSI) of Hong Kong are used as illustrative examples. Experimental results showed that the proposed AIS2VR stock index prediction model outperforms the three single stage AIS-based SVR forecasting models and the traditional grid search method. It is an efficient and effective alternative for stock index forecasting. |
主题分类 |
基礎與應用科學 >
資訊科學 基礎與應用科學 > 統計 社會科學 > 管理學 |
参考文献 |
|
被引用次数 |