题名

國中生在動態幾何軟體輔助下臆測幾何性質之研究

并列篇名

Junior High School Students Conjecture Geometric Properties in a Dynamic Geometry Software Environment

DOI

10.6278/tjme.20170317.001

作者

鄭英豪(Ying-Hao Cheng);陳建誠(Jian-Cheng Chen);許慧玉(Hui-Yu Hsu)

关键词

動態幾何軟體(DGS) ; 幾何性質 ; 程序性反駁模式(PRM) ; 臆測 ; dynamic geometry software (DGS) ; geometric property ; proceduralized refutation model (PRM) ; conjecture

期刊名称

臺灣數學教育期刊

卷期/出版年月

4卷1期(2017 / 04 / 01)

页次

1 - 34

内容语文

繁體中文

中文摘要

本研究探討國中生如何在動態幾何環境下臆測幾何性質。研究以程序性反駁模式為中介理論架構設計幾何臆測學習單,目的是瞭解國中生如何在動態幾何環境中建構圖形案例,並依據案例來臆測正確的幾何性質。其中,本研究特別強調將動態幾何軟體定位為「例子產生器」,結合幾何圖形案例測量值的紀錄表格,鷹架學生進行臆測活動。研究樣本為15位七年級國中生,以質性分析方法為主、量化資料輔助說明下,研究發現(1)動態幾何環境下,幾何性質本身涉及測量值關係的複雜程度及幾何性質是否容易在圖形上視覺觀察,影響學生造例與臆測表現。同時這兩個因素影響學生在動態幾何環境下的認知行為和學習困難;(2)具備良好的幾何物件分類系統是在動態幾何環境中成功臆測的重要關鍵;(3)學生對圖形進行分解與重組操作有助於在動態幾何環境中察覺圖形中蘊含的特徵或關係;(4)學生能拖曳不同圖形案例並不等同他們能察覺符合命題結果的正反例,進而影響臆測結果;(5)學生仍缺乏動態幾何環境知識以建構原本意圖產生的圖形案例。另,本研究也依據學生在結合動態幾何與案例記錄表格的表現,區辨出不同臆測認知策略:分別為有限隨機離散案例歸納、系統性調整案例臆測以及動態性調整案例臆測。

英文摘要

This study investigated how junior high school students conjecture geometric properties in a dynamic geometry software (DGS) environment. Using the proceduralized refutation model as an intermediate theoretical framework, we particularly examined the process and the difficulties that students may have when conjecturing. Specifically, we referred to DGS as an "example generator" and combined it with spreadsheets to support students in conjecturing geometric properties. A total of 15 seventh grade students participated in this study. Based on the qualitative analysis and quantitative data, we demonstrated that (1) the complexity of the relationship among measurements involved in a geometric property and the possibility of visualizing that property play important roles in determining students' performance when conjecturing in a DGS environment; (2) being able to effectively classify geometric objects was the key to successfully perceiving geometric properties and relationships embedded in geometric diagrams; (3) decomposing and recomposing diagrams aided students in recognizing embedded geometric properties; (4) the ability to drag a geometric diagram into different shapes in a DGS environment did not guarantee the ability to discern supportive and counter examples or the ability to use those examples to correct false conditional statements; and (5) a lack of knowledge specific to DGS environments, particularly those related to dragging, hindered students' effective construction of diagram examples. Additionally, we identified three types of conjecture approach: induction by randomly generating a finite number of discrete examples, conjecture by systematically making examples, and conjecture by dynamically altering examples.

主题分类 基礎與應用科學 > 數學
社會科學 > 教育學
参考文献
  1. Arzarello, F.,Olivero, F.,Paola, D.,Robutti, O.(2002).A congnitive analysis of dragging practises in Cabri environments.ZDM - The International Journal on Mathematics Education,34(3),66-72.
  2. Baccaglini-Frank, A.,Mariotti, M. A.,Antonini, S.(2009).Different perceptions of invariants and generality of proof in dynamic geometry.Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education,Thessaloniki, Greece:
  3. Boero, P.(2006).Habermas' theory of rationality as a comprehensive frame for conjecturing and proving in school.Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education,Prague, Czech Republic:
  4. Cañadas, M. C.,Deulofeu, J.,Figueiras, L.,Reid, D.,Yevdokimov, O.(2007).The conjecturing process: Perspectives in theory and implications in practice.Journal of Teaching and Learning,5(1),55-72.
  5. Chazan, D.(1993).High school geometry students' justification for their views of empirical evidence and mathematical proof.Educational Studies in Mathematics,24(4),359-387.
  6. Cheng, Y. H.,Lin, F. L.(2008).A study on left behind students for enhancing their competence of geometry argumentation.Proceedings of the Joint Meeting of 32nd Conference of the International Group for the Psychology of Mathematics Education and PME-NA XXX,Morelia, Mexico:
  7. Cheng, Y. H.,Lin, F. L.(2006).Using reading and coloring to enhance incomplete prover's performance in geometry proof.Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education,Prague, Czech Republic:
  8. Cheng, Y. H.,Lin, F. L.(2007).The effectiveness and limitation of reading and coloring strategy in learning geometry proof.Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education,Seoul, Korea:
  9. de Villiers, M.(2004).Using dynamic geometry to expand mathematics teachers' understanding of proof.International Journal of Mathematical Education in Science and Technology,35(5),703-724.
  10. de Villiers, M.(1994).The role and function of a hierarchical classification of quadrilaterals.For the Learning of Mathematics,14(1),11-18.
  11. de Villiers, M.(1999).A sketchpad discovery involving areas of inscribed polygons.Mathematics in School,28(2),18-21.
  12. Duval, R.(1995).Geometrical pictures: Kinds of representation and specific processings.Exploiting mental imagery with computers in mathematics education,Berlin, Germany:
  13. Erez, M. M.,Yerushalmy, M.(2006).If you can turn a rectangle into a square, you can turn a square into a rectangle..." Young students experience the dragging tool.International Journal of Computers for Mathematical Learning,11(3),271-299.
  14. Fischbein, E.(1993).The theory of figural concepts.Educational Studies in Mathematics,24(2),139-162.
  15. Fischbein, E.,Nachlieli, T.(1998).Concepts and figures in geometrical reasoning.International Journal of Science Education,20(10),1193-1211.
  16. Gal, H.,Linchevski, L.(2010).To see or not to see: Analyzing difficulties in geometry from the perspective of visual perception.Educational Studies in Mathematics,74(2),163-183.
  17. González, G.,Herbst, P.(2009).Students' conceptions of congruency through the use of dynamic geometry software.International Journal of Computers for Mathematical Learning,14(2),153-182.
  18. Green, J. L.(Ed.),Camilli, G.(Ed.),Ellmore, P. B.(Ed.)(2006).Handbook of complimentary methods in education research.Mahwah, NJ:Lawrence Erlbaum Associates.
  19. Greeno, J. G.(1980).Some examples of cognitive task analysis with instructional implications.Aptitude, learning, and instruction, Vol. 2: Cognitive process analyses of learning and problem solving,Hillsdale, NJ:
  20. Haspekian, M.(2005).An "instrumental approach" to study the integration of a computer tool into mathematic teaching: The case of spreadsheets.International Journal of Computers for Mathematical Learning,10(2),109-141.
  21. Healy, L.,Hoyles, C.(2001).Software tools for geometrical problem solving: Potential and pitfalls.International Journal of Computers for Mathematical Learning,6(3),235-256.
  22. Hegarty, M.(2004).Diagrams in the mind and in the world: Relations between internal and external visualizations.Diagrammatic representation and inference: Third international conference, diagrams 2004, Cambridge, UK, March 2004 proceedings,Berlin, Germany:
  23. Hsu, H. Y.(2010).Ann Arbor, MI,University of Michigan.
  24. Hsu, H. Y.(2008).Learning opportunity of reasoning: The interplay between gestures and diagrammatic properties.the 11th International Congress on Mathematical Education,Monterrey, Mexico:
  25. Kilpatrick, J.(Ed.),Martin, W. G.(Ed.),Schifter, D.(Ed.)(2003).A research companion to principals and standards for school mathematics.Reston, VA:National Council of Teachers of Mathematics.
  26. Klaczynski, P. A.,Narasimham, G.(1998).Representations as mediators of adolescent deductive reasoning.Developmental Psychology,34(5),865-881.
  27. Koedinger, K. R.,Anderson, J. R.(1990).Abstract planning and perceptual chunks: Elements of expertise in geometry.Cognitive Science,14(4),511-550.
  28. Koehler, M.,Mishra, P.(2009).What is technological pedagogical content knowledge?.Contemporary Issues in Technology and Teacher Education,9(1),60-70.
  29. Laborde, C.(2001).Integration of technology in the design of geometry tasks with Cabri-Geometry.International Journal of Computers for Mathematical Learning,6(3),283-317.
  30. Laborde, C.(2005).The hidden role of diagrams in students' construction of meaning in geometry.Meaning in mathematics education,New York, NY:
  31. Laborde, C.(2000).Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving.Educational Studies in Mathematics,44,151-161.
  32. Lakatos, I.(1976).Proof and refutations: The logic of mathematical discovery.Cambridge, UK:The Cambridge University Press.
  33. Leung, A.(2008).Dragging in a dynamic geometry environment through the lens of variation.International Journal of Computers for Mathematical Learning,13(2),135-157.
  34. Lin, F. L.,Wu Yu, J. Y.(2005).False proposition - As a means for making conjectures in mathematics classrooms.the Invited speech in Asian Mathematical Conference,Singapore:
  35. Mariotti, M. A.(2001).Justifying and proving in the Cabri environment.International Journal of Computers for Mathematical Learning,6(3),257-281.
  36. Mason, J.,Burton, L.,Stacey, K.(1982).Thinking mathematically.London, UK:Addison-Wesley Pub. Co.
  37. Merriam, S. B.(1998).Qualitative research and case study applications in education.San Francisco, CA:Jossey-Bass.
  38. Michener, E. R.(1978).Understanding understanding mathematics.Cognitive Science,2,361-383.
  39. National Council of Teachers of Mathematics=NCTM(2000).Principles and standards for school mathematics.Reston, VA:Author.
  40. Olivero, F.,Robutti, O.(2007).Measuring in dynamic geometry environments as a tool for conjecturing and proving.International Journal of Computers for Mathematical Learning,12(2),135-156.
  41. Reid, D.(2002).Conjectures and refutations in grade 5 mathematics.Journal for Research in Mathematics Education,33(1),5-29.
  42. Resnick, L. B.(1975).,Pittsburgh, PA:Learning Research and Development Center.
  43. Ruthven, K.,Laborde, C.,Leach, J.,Tiberghien, A.(2009).Design tools in didactical research: Instrumenting the epistemological and cognitive aspects of the design of teaching sequences.Educational Researcher,38(5),329-342.
  44. Selden, J.,Selden, A.(1995).Unpacking the logic of mathematical statements.Educational Studies in Mathematics,29(2),123-151.
  45. Stein, M. K.,Grover, B. W.,Henningsen, M.(1996).Building student capacity for mathematical thinking and reasoning: An analysis of mathematical tasks used in reform classrooms.American Educational Research Journal,33(2),455-488.
  46. Strauss, A.,Corbin, J.(1998).Basics of qualitative research: Techniques and procedures for developing grounded theory.Thousand Oaks, CA:Sage.
  47. Tall, D.,Vinner, S.(1981).Concept image and concept definition in mathematics with particular reference to limits and continuity.Educational Studies in Mathematics,12,151-169.
  48. Wu Yu, J. Y.,Hsu, H. Y.,Lin, C. J.,Chin, E. C.(2009).Validating a conditional statement: The role of empirical examples.Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education,Thesalloniki, Greece:
  49. Yerushalmy, M.,Chazan, D.(1990).Overcoming visual obstacles with the aid of the Supposer.Educational Studies in Mathematics,21(3),199-219.
  50. 林福來編(2010)。數學臆測活動的設計、教學與評量。臺北=Taipei:國立臺灣師範大學=National Taiwan Normal Univeristy。
  51. 林福來(2010)。數學臆測活動的設計、教學與評量:總計畫。行政院國家科學委員會專題研究計畫成果報告─數學教育學門專題研究成果討論會,嘉義=Chiayi:
  52. 陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,6(2),192-218。
被引用次数
  1. 鄭英豪,蔡淑君,陳建誠,許慧玉(2020)。拖曳對國小生理解四邊形包含關係之研究。臺灣數學教育期刊,7(1),27-54。
  2. 鄭章華,黃仲楷,張景媛,林俊佑(2020)。Technology Acceptance, Growth Needs, and Pedagogical Usability as Factors Influencing Teachers' Perception and Use of the Geometer's Sketchpad Software。教育研究與發展期刊,16(2),95-133。