题名

以分段三次方指數函數配適台灣公債市場之利率期限結構:線性最適化與非線性最適化之比較

并列篇名

Fitting the Term Structure of Taiwan Government Bond Market with Cubic Exponential Spline Function: A Comparison between Linear Optimization Method and Nonlinear Optimization Method

DOI

10.6545/JoFS.2000.8(2).2

作者

謝承熹(Cheng-His Hsieh)

关键词

利率期限結構 ; 殖利率曲線 ; 折現因子 ; 分段三次方指數函數 ; Term Structure of Interest Rates ; Yield Curve ; Discount Factor ; Cubic Exponential Spline

期刊名称

中國財務學刊

卷期/出版年月

8卷2期(2000 / 08 / 31)

页次

25 - 47

内容语文

繁體中文

中文摘要

本文以分段三次方指數函數(Cubic Exponential Spline Fitting)配適95/6/21至99/12/29臺灣公債市場每週三的利率期限姞構。首先,文中假設折現因子具分段三次方指數函數形式,接著分別以線性最適化與非線性最適化法估計參數,求得折現函數,並轉換而得利率期限結構。在資料期間內,本文發現線性最適化法的估計誤差較非線性最適化法小,且估計所需時間亦較短;因此,在降低估計誤差和估計時間的考量下,本文建議在配適利率期限結構時,應以線性適化法來配適較為適當。

英文摘要

This study is designed to fit the term structure of Taiwan government bond market by applying the cubic exponential spline method on ev.ery Wednesdays from 1995/6/2 1 to 1999/12/29. It is presumed in the study that the functional form of discount factor is a cubic exponential spline function. Since the estimated parameters are used to calculate the discount function for each period, the term structure of interest rates can then be obtained through the discount function. In this sense, the linear and nonlinear optimization methods are employed respectively to estimate parameters embedded in the discount function. The result of this study shows that, with the application of linear optimization method, the fitting errors is smaller and fitting time is shorter than those estimated by nonlinear optimization method Therefore, with the concern of reducing the fitting error and the fitting time, the linear optimization approach is a better fitting method than nonlinear optimization method.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Adams, K. J.,D. R. V. Deventer(1994).The Journal of Fixed Income.
  2. Black, F.,E. Derman,W. Toy(1990).Financial Analysts Journal.
  3. Black, F.,P. Karasinski(1991).Financial Analysts Journal.
  4. Brennan, M. J.,E. S. Schwartz(1982).An Equilibrium Model of Bond Pricing and a Test of Market Efficiency.Journal of Financial and Quantitative Analysis,17(3),301-29.
  5. Carleton, W. R.,I. Cooper(1976).Journal of Finance.
  6. Chambers, D. R.,W. T. Carleton,D. R. Waldman(1984).A New Approach to Estimation of the Term Structure of Interest Rates.Journal of Financial and Quantitative Analysis,19(3),233-52.
  7. Constantinides, G.(1992).A Theory of the Nominal Term Structure of Interest Rates.Review of Financial Studies,5(4),531-52.
  8. Cox, J. C.,J. E. Ingersoll,S. A. Ross(1985).A Theory of the Term Structure of Interest Rates.Econometrica,53,385-407.
  9. Doan, T. A.(1992).RATS User`s Manual, Version 4 (Evanston, IL).
  10. Heath, D.,R. Jarrow,A. Morton(1990).Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation.Journal of Financial and Quantitative Analysis,25,419-40.
  11. Heath, D.,R. Jarrow,A. Morton(1992).Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation.Econometrica,60,77-105.
  12. Ho, T. S.,S. Lee(1986).Term Structure Movements and Pricing Interest Rate Contingent Claim.Journal of Finance,41,1011-28.
  13. Hull, J.(2000).Options, Futures, and Other Derivatives (Upper Saddle River, NJ).
  14. Hull, J.,A. White(1990).Pricing Interest-Rate-Derivative Securities.Review of Financial Studies,3,537-92.
  15. Hull, J.,A. White(1996).Using Hull-White Interest Rate Trees.Journal of Derivatives,4,26-36.
  16. Hull, J.,A. White(1994).Numerical Procedures for Implementing Term Structure Models I: Single-Factor Models.Journal of Derivatives,2(1),7-16.
  17. Jordan, J. V.(1984).Tax Effect in Term Structure Estimation.Journal of Finance,39(2),393-406.
  18. Lin, B. H.(1999).Fitting the Term Structure of Interest Rates for Taiwanese Government Bonds.Journal of Multinational Financial Management,9,331-52.
  19. Lin, B. H.,D. A. Paxson(1995).Term Structure Volatility and Bond Futures Embedded Options.Journal of Business Finance and Accounting,22(1),101-27.
  20. Longstaff, F.(1989).A Non-Linear General Equilibrium Model of the Term Structure of Interest Rates.Journal of Financial Economics,23,195-224.
  21. Longstaff, F.,E. Schwartz(1992).Interest Rate Volatility and Term Structure: A Two Factor General Equilibrium Model.Journal of Finance,47(4),1259-82.
  22. McCulloch, J. H.(1971).Journal of Business.
  23. McCulloch, J. H.(1975).The Tax Adjusted Yield Curve, Journal of Finance.30(3),811-30.
  24. Nelder, J. A.,R. Mead(1965).Computer Journal.
  25. Nelson, C. R.,A. F. Sigel(1987).Parsimonious Modeling of Yield Curve.Journal of Business,60(4),473-89.
  26. Press, Flannery, Teukolsky,,Vettering(1988).Numerical Recipes in C.New York:Cambridge University Press.
  27. Schaefer, S. M.(1973).London Business School.
  28. Shea, G. S.(1984).Journal of Financial and Quantitative Analysis.
  29. Shea, G. S.(1985).Journal of Finance.
  30. Steeley, J. M.(1991).Estimating the Gilt-edged Term Structure: Basis Splines and Confidence Intervals.Journal of Business Finance and Accounting,18(4),513-29.
  31. Vasicek, O. A.,H. G. Fong(1982).Term Structure Modeling Using Exponential Splines.Journal of Finance,2,339-47.
被引用次数
  1. 蔡高明、張千雲、周建新(2008)。日本國債利率期限結構估計與資訊內涵應用。風險管理學報,10(1),29-46。
  2. 陳振宇、周建新(2007)。極大化平滑度與精確度之利率期限結構估計。中山管理評論,15(2),323-356。
  3. 黃彥騰、陳振宇、周建新(2008)。模糊迴歸與利率期限結構估計。臺灣管理學刊,8(1),73-93。
  4. 黃彥騰、周建新(2005)。應用Chebyshev Polynomials模型估計台灣公債市場之利率期限結構。臺灣金融財務季刊,6(1),11-29。
  5. 劉嘉烜、周建新、于鴻福(2007)。利率期限結構估計模型與公債交易策略。中山管理評論,15(4),779-811。
  6. 張千雲、周建新、李欣芳、于鴻福(2009)。應用Generalized M-vector模型於台灣公債市場免疫策略之實證。中山管理評論,17(2),483-515。
  7. 張千雲、周建新、于鴻福(2009)。利率期限結構變動與債券型基金投資績效。臺大管理論叢,20(1),189-225。
  8. (2003)。利率期限結構估計模型之實證研究An Empirical Study of the Term Structure Estimating Model。管理學報,20(4),775-804。
  9. (2005)。應用Chebyshev Polynomials模型估計台灣公債市場之利率期限結構。臺灣金融財務季刊,6(1),11-29。
  10. (2006)。考慮流動性之殖利率曲線近似求解法。臺灣銀行季刊,57(2),162-174。
  11. (2006)。台灣政府公債市場遠期利率期限結構之估計—GCV與VRP模型之比較。商管科技季刊,7(1),103-127。