题名

山苦瓜改善高脂飲食誘發小鼠代謝異常、脂肪肝與肝相關基因 mRNA 表現

并列篇名

Wild bitter gourd ameliorates high-fat diet induced metabolic disorder, fatty liver and hepatic mRNA expressions of related genes in C57BL/6J mice.

DOI

10.6342/NTU201601776

作者

董又慈

关键词

山苦瓜 ; 肝臟 ; 脂質代謝 ; 粒線體 ; 非酒精性脂肪肝 ; wild bitter gourd ; liver ; lipid metabolism ; mitochondria ; non-alcoholic fatty liver

期刊名称

臺灣大學生化科技學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

黃青真

内容语文

繁體中文

中文摘要

隨著飲食及生活習慣的改變,近年來,全球肥胖與代謝異常盛行率急遽增加,肥胖者有較高風險罹患代謝症候群、非酒精性脂肪肝、第二型糖尿病等許多慢性疾病,因此如何有效控制已成為公共衛生之重要議題。過去研究指出,山苦瓜含有活化 PPARα 的活性分子, PPARα 主要參與肝臟脂質代謝調控:促進脂肪酸氧化、減少脂肪堆積、促進脂肪酸運輸等。此外,山苦瓜能透過多種機制進行血糖調節。近期本實驗室 in vivo 研究顯示餵食 5% 山苦瓜能藉由促進肝臟脂肪酸代謝、副睪脂褐化、促進肌肉與白色脂肪組織粒線體生合成及活性以增加能量消耗,有效改善高糖或高脂飲食造成的肥胖、胰島素抗性等症狀。 本研究先以高脂飲食誘導 C57BL/6J 公鼠產生肥胖後再給予 3% 或 5% 之花蓮四號山苦瓜全果凍乾粉 (BGP) 或其水解產物 (BGPa) ,探討肥胖後補充山苦瓜對血糖、血脂、肝臟脂質代謝與粒線體活性相關 mRNA 表現量等之影響,以及藉由內源性酵素水解前處理對山苦瓜功效之影響。結果顯示在高脂飲食誘發肥胖後添加山苦瓜於高脂飲食中能顯著改善高脂飲食造成的肥胖、高血糖、高膽固醇血症、非酒精性脂肪肝等代謝失調情形,無論有無經過水解處理,山苦瓜皆可以藉由活化肝臟 PPARα 促進脂肪酸氧化相關基因表現以改善肝臟脂質堆積情形。經水解後更可能藉由活化 LXRα 促進膽酸合成酵素基因表現,使其改善肝臟膽固醇堆積之效果提升。此外,水解後之山苦瓜改善高脂飲食對肝臟粒線體生合成、融合與分裂相關基因 mRNA 表現的降低情形顯著優於未處理之山苦瓜。 綜合以上,山苦瓜可以藉由促進肝臟脂肪酸分解及促進粒線體活性以舒緩高脂飲食造成的代謝壓力,以內源性酵素水解醣基後使山苦瓜減少肝臟膽固醇堆積及增加肝臟粒線體活性相關 mRNA 表現之效果提升,使其更能有效改善肥胖造成的非酒精性脂肪肝。

英文摘要

The prevalence of obesity and metabolic disorders over the world increases in recent decades, as a result of changes in the diet and life style. Obesity are linked to high risks of many chronic diseases, such as metabolic syndrome, non-alcoholic fatty liver disease, and type 2 diabetes, etc. It has thus become a key issue in public health. Previous studies demonstrated that wild bitter gourd extracts activate PPARα in a transactivation assay and active compounds have been identified. PPARα is known to regulate hepatic lipid metabolism by up-regulating genes of some metabolic pathway and leading to enhanced fatty acid oxidation, less fat accumulation, etc. In addition, wild bitter gourd can improve hyperglycemia through various mechanisms. Recent in vivo studies in our lab demonstrated that mice fed 5% wild bitter gourd powder (BGP) increased the energy expenditure by promoting hepatic fatty acid metabolism, browning of epididymal white adipose tissue and the function of mitochondria in skeletal muscle and white adipose tissue; thus, wild bitter gourd can ameliorate the obesity and the insulin resistance resulting from a high-sugar or high-fat diet. This study aims to examine effects of wild bitter gourd supplementation to high-fat diet induced obese mice on serum glucose and lipid, as well as the mRNA expressions of the hepatic lipid metabolism and hepatic mitochondrial function. Five groups of C57BL/6J male mice were fed an AIN-93G modified high-fat diet for 15 weeks and then followed by supplementing 0%, 3% BGP, 5% BGP, 3% hydrolyzed BGP (BGPa) or 5% BGPa in high-fat diet respectively. Our data suggests that the supplement of wild bitter gourd improve metabolic disorders induced by the high-fat diet, including obesity, hyperglycemia, hypercholesterolemia, and non-alcoholic fatty liver disease. BGP and BGPa can both decrease the hepatic lipid accumulation by increasing the mRNA expression levels of genes related to fatty acid oxidation through activating hepatic PPARα. Noticeably, only BGPa can up-regulate the mRNA expression level of the gene related to bile acid synthesis possibly by activating hepatic LXRα. These data suggested that BGPa might have additional benefit improving the hepatic cholesterol accumulation. In addition, the function of BGPa to ameliorate the down-regulated mRNA expression level of genes related to mitochondrial biogenesis, fusion and fission due to the high-fat diet is significantly better than BGP. In conclusion, wild bitter gourd may alleviate the metabolic disorder from the high-fat diet by facilitating the hepatic fatty acid catabolism and promoting mitochondrial activity. Also, wild bitter gourd hydrolyzed by its endogenous glucosidase enhances its ability to improve the hepatic cholesterol accumulation and increase the mRNA expression level of genes related to hepatic mitochondrial function. Based on this, BGPa ameliorates the obesity-induced non-alcoholic fatty liver more effectively than BGP.

主题分类 生命科學院 > 生化科技學系
生物農學 > 生物科學
参考文献
  1. Abdelmegeed, M. A., Yoo, S. H., Henderson, L. E., Gonzalez, F. J., Woodcroft, K. J., & Song, B. J. (2011). PPARalpha expression protects male mice from high fat-induced nonalcoholic fatty liver. J Nutr, 141(4), 603-610.
    連結:
  2. Alam, M. A., Uddin, R., Subhan, N., Rahman, M. M., Jain, P., & Reza, H. M. (2015). Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J Lipids, 2015, 496169.
    連結:
  3. Alberti, K. G. M. M., Zimmet, P., & Shaw, J. (2006). The metabolic syndrome—a new worldwide definition. The Lancet, 366(9491), 1059-1062.
    連結:
  4. Andreux, P. A., Houtkooper, R. H., & Auwerx, J. (2013). Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov, 12(6), 465-483.
    連結:
  5. Ashtari, S., Pourhoseingholi, M. A., & Zali, M. R. (2015). Non-alcohol fatty liver disease in Asia: Prevention and planning. World J Hepatol, 7(13), 1788-1796.
    連結:
  6. Beaven, S. W., Matveyenko, A., Wroblewski, K., Chao, L., Wilpitz, D., Hsu, T. W., et al. (2013). Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance. Cell Metab, 18(1), 106-117.
    連結:
  7. Bedogni, G., & Bellentani, S. (2004). Fatty liver: how frequent is it and why? Annals of hepatology : official journal of the Mexican Association of Hepatology, 3(2), 63-65.
    連結:
  8. Beltowski, J. (2008). Liver X receptors (LXR) as therapeutic targets in dyslipidemia. Cardiovasc Ther, 26(4), 297-316.
    連結:
  9. Berge, K. E., Tian, H., Graf, G. A., Yu, L., Grishin, N. V., Schultz, J., et al. (2000). Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science, 290(5497), 1771-1775.
    連結:
  10. Brown, M. S., & Goldstein, J. L. (1986). A receptor-mediated pathway for cholesterol homeostasis. Science, 232(4746), 34-47.
    連結:
  11. Campbell, R. K. (2009). Fate of the beta-cell in the pathophysiology of type 2 diabetes. J Am Pharm Assoc (2003), 49 Suppl 1, S10-15.
    連結:
  12. Canto, C., & Auwerx, J. (2010). AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci, 67(20), 3407-3423.
    連結:
  13. Chao, C.-Y., Yin, M.-C., & Huang, C.-j. (2011). Wild bitter gourd extract up-regulates mRNA expression of PPARα, PPARγ and their target genes in C57BL/6J mice. Journal of Ethnopharmacology, 135(1), 156-161.
    連結:
  14. Chao, C. Y., & Huang, C. J. (2003). Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells. J Biomed Sci, 10(6 Pt 2), 782-791.
    連結:
  15. Chaturvedi, P. (2012). Antidiabetic potentials of Momordica charantia: multiple mechanisms behind the effects. J Med Food, 15(2), 101-107.
    連結:
  16. Chen, H., & Chan, D. C. (2010). Physiological functions of mitochondrial fusion. Ann N Y Acad Sci, 1201, 21-25.
    連結:
  17. Chen, J. C., Liu, W. Q., Lu, L., Qiu, M. H., Zheng, Y. T., Yang, L. M., et al. (2009). Kuguacins F-S, cucurbitane triterpenoids from Momordica charantia. Phytochemistry, 70(1), 133-140.
    連結:
  18. Chen, P. H., Chen, G. C., Yang, M. F., Hsieh, C. H., Chuang, S. H., Yang, H. L., et al. (2012). Bitter melon seed oil-attenuated body fat accumulation in diet-induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue. J Nutr, 142(7), 1197-1204.
    連結:
  19. Chen, Q., Chan, L. L., & Li, E. T. (2003). Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr, 133(4), 1088-1093.
    連結:
  20. Chu, K., Miyazaki, M., Man, W. C., & Ntambi, J. M. (2006). Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol Cell Biol, 26(18), 6786-6798.
    連結:
  21. Chuang, C. Y., Hsu, C., Chao, C. Y., Wein, Y. S., Kuo, Y. H., & Huang, C. J. (2006). Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARalpha in bitter gourd (Momordica charantia L.). J Biomed Sci, 13(6), 763-772.
    連結:
  22. Colman, R. J., Beasley, T. M., Kemnitz, J. W., Johnson, S. C., Weindruch, R., & Anderson, R. M. (2014). Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun, 5, 3557.
    連結:
  23. Day, C. P., & James, O. F. W. (1998). Steatohepatitis: A tale of two “hits”? Gastroenterology, 114(4), 842-845.
    連結:
  24. Dentin, R., Benhamed, F., Hainault, I., Fauveau, V., Foufelle, F., Dyck, J. R. B., et al. (2006). Liver-Specific Inhibition of ChREBP Improves Hepatic Steatosis and Insulin Resistance in ob/ob Mice. Diabetes, 55(8), 2159-2170.
    連結:
  25. Elgass, K., Pakay, J., Ryan, M. T., & Palmer, C. S. (2013). Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta, 1833(1), 150-161.
    連結:
  26. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 226(1), 497-509.
    連結:
  27. Francque, S., Verrijken, A., Caron, S., Prawitt, J., Paumelle, R., Derudas, B., et al. (2015). PPARalpha gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J Hepatol, 63(1), 164-173.
    連結:
  28. Giby, V. G., & Ajith, T. A. (2014). Role of adipokines and peroxisome proliferator-activated receptors in nonalcoholic fatty liver disease. World J Hepatol, 6(8), 570-579.
    連結:
  29. Grygiel-Gorniak, B. (2014). Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J, 13, 17.
    連結:
  30. Hardie, D. G., Ross, F. A., & Hawley, S. A. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 13(4), 251-262.
    連結:
  31. He, W. J., Chan, L. Y., Clark, R. J., Tang, J., Zeng, G. Z., Franco, O. L., et al. (2013). Novel inhibitor cystine knot peptides from Momordica charantia. PLoS One, 8(10), e75334.
    連結:
  32. Hong, C., Bradley, M. N., Rong, X., Wang, X., Wagner, A., Grijalva, V., et al. (2012). LXRalpha is uniquely required for maximal reverse cholesterol transport and atheroprotection in ApoE-deficient mice. J Lipid Res, 53(6), 1126-1133.
    連結:
  33. Hong, C., & Tontonoz, P. (2014). Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov, 13(6), 433-444.
    連結:
  34. Hoppins, S., Lackner, L., & Nunnari, J. (2007). The machines that divide and fuse mitochondria. Annu Rev Biochem, 76, 751-780.
    連結:
  35. Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol, 13(4), 225-238.
    連結:
  36. Houtkooper, R. H., Williams, R. W., & Auwerx, J. (2010). Metabolic networks of longevity. Cell, 142(1), 9-14.
    連結:
  37. Hsu, C., Hsieh, C. L., Kuo, Y. H., & Huang, C. J. (2011). Isolation and identification of cucurbitane-type triterpenoids with partial agonist/antagonist potential for estrogen receptors from Momordica charantia. J Agric Food Chem, 59(9), 4553-4561.
    連結:
  38. Huang, T. N., Lu, K. N., Pai, Y. P., Chin, H., & Huang, C. J. (2013). Role of GLP-1 in the Hypoglycemic Effects of Wild Bitter Gourd. Evid Based Complement Alternat Med, 2013, 625892.
    連結:
  39. Ito, A., Hong, C., Rong, X., Zhu, X., Tarling, E. J., Hedde, P. N., et al. (2015). LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. 4, e08009.
    連結:
  40. Janssen, A. W., Betzel, B., Stoopen, G., Berends, F. J., Janssen, I. M., Peijnenburg, A. A., et al. (2015). The impact of PPARalpha activation on whole genome gene expression in human precision cut liver slices. BMC Genomics, 16, 760.
    連結:
  41. Jiang, Q., Lee, C. Y. D., Mandrekar, S., Wilkinson, B., Cramer, P., Zelcer, N., et al. (2008). ApoE promotes the proteolytic degradation of Aβ. Neuron, 58(5), 681-693.
    連結:
  42. Jiang, Y., Cypess, A. M., Muse, E. D., Wu, C.-R., Unson, C. G., Merrifield, R. B., et al. (2001). Glucagon receptor activates extracellular signal-regulated protein kinase 1/2 via cAMP-dependent protein kinase. Proceedings of the National Academy of Sciences, 98(18), 10102-10107.
    連結:
  43. Joseph, S. B., Laffitte, B. A., Patel, P. H., Watson, M. A., Matsukuma, K. E., Walczak, R., et al. (2002). Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem, 277(13), 11019-11025.
    連結:
  44. Joseph, S. B., McKilligin, E., Pei, L., Watson, M. A., Collins, A. R., Laffitte, B. A., et al. (2002). Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A, 99(11), 7604-7609.
    連結:
  45. Juge-Aubry, C. E., Hammar, E., Siegrist-Kaiser, C., Pernin, A., Takeshita, A., Chin, W. W., et al. (1999). Regulation of the Transcriptional Activity of the Peroxisome Proliferator-activated Receptor α by Phosphorylation of a Ligand-independent trans-Activating Domain. Journal of Biological Chemistry, 274(15), 10505-10510.
    連結:
  46. Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121), 840-846.
    連結:
  47. Kelley, D. E., He, J., Menshikova, E. V., & Ritov, V. B. (2002). Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes, 51(10), 2944-2950.
    連結:
  48. Kelly, D. P., & Scarpulla, R. C. (2004). Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev, 18(4), 357-368.
    連結:
  49. Kelly, T., Yang, W., Chen, C. S., Reynolds, K., & He, J. (2008). Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond), 32(9), 1431-1437.
    連結:
  50. Kenyon, C. J. (2010). The genetics of ageing. Nature, 464(7288), 504-512.
    連結:
  51. Kiss, E., Popovic, Z., Bedke, J., Wang, S., Bonrouhi, M., Gretz, N., et al. (2011). Suppression of Chronic Damage in Renal Allografts by Liver X Receptor (LXR) Activation: Relevant Contribution of Macrophage LXRα. The American Journal of Pathology, 179(1), 92-103.
    連結:
  52. Kotronen, A., Seppala-Lindroos, A., Bergholm, R., & Yki-Jarvinen, H. (2008). Tissue specificity of insulin resistance in humans: fat in the liver rather than muscle is associated with features of the metabolic syndrome. Diabetologia, 51(1), 130-138.
    連結:
  53. Kubola, J., & Siriamornpun, S. (2008). Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem, 110(4), 881-890.
    連結:
  54. Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274-293.
    連結:
  55. Lazennec, G., Canaple, L., Saugy, D., & Wahli, W. (2000). Activation of Peroxisome Proliferator-Activated Receptors (PPARs) by Their Ligands and Protein Kinase A Activators. Molecular Endocrinology, 14(12), 1962-1975.
    連結:
  56. Liu, J. Q., Chen, J. C., Wang, C. F., & Qiu, M. H. (2009). New cucurbitane triterpenoids and steroidal glycoside from Momordica charantia. Molecules, 14(12), 4804-4813.
    連結:
  57. Lu, K.-N., Hsu, C., Chang, M.-L., & Huang, C.-j. (2013). Wild bitter gourd increased metabolic rate and up-regulated genes related to mitochondria biogenesis and UCP-1 in mice. Journal of Functional Foods, 5(2), 668-678.
    連結:
  58. Lu, K. H., Tseng, H. C., Liu, C. T., Huang, C. J., Chyuan, J. H., & Sheen, L. Y. (2014). Wild bitter gourd protects against alcoholic fatty liver in mice by attenuating oxidative stress and inflammatory responses. Food Funct, 5(5), 1027-1037.
    連結:
  59. Luo, Y., & Tall, A. R. (2000). Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. Journal of Clinical Investigation, 105(4), 513-520.
    連結:
  60. Malerod, L., Juvet, L. K., Hanssen-Bauer, A., Eskild, W., & Berg, T. (2002). Oxysterol-activated LXRalpha/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. Biochem Biophys Res Commun, 299(5), 916-923.
    連結:
  61. Mandard, S., Müller, M., & Kersten, S. (2004). Peroxisome proliferator-activated receptor α target genes. Cellular and Molecular Life Sciences CMLS, 61(4), 393-416.
    連結:
  62. Matsui, S., Yamane, T., Takita, T., Oishi, Y., & Kobayashi-Hattori, K. (2013). The hypocholesterolemic activity of Momordica charantia fruit is mediated by the altered cholesterol- and bile acid–regulating gene expression in rat liver. Nutrition Research, 33(7), 580-585.
    連結:
  63. Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412-419.
    連結:
  64. Menke, J. G., Macnaul, K. L., Hayes, N. S., Baffic, J., Chao, Y. S., Elbrecht, A., et al. (2002). A novel liver X receptor agonist establishes species differences in the regulation of cholesterol 7alpha-hydroxylase (CYP7a). Endocrinology, 143(7), 2548-2558.
    連結:
  65. Mustelin, L., Pietilainen, K. H., Rissanen, A., Sovijarvi, A. R., Piirila, P., Naukkarinen, J., et al. (2008). Acquired obesity and poor physical fitness impair expression of genes of mitochondrial oxidative phosphorylation in monozygotic twins discordant for obesity. Am J Physiol Endocrinol Metab, 295(1), E148-154.
    連結:
  66. Pawlak, M., Lefebvre, P., & Staels, B. (2015). Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol, 62(3), 720-733.
    連結:
  67. Peet, D. J., Turley, S. D., Ma, W., Janowski, B. A., Lobaccaro, J. M., Hammer, R. E., et al. (1998). Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell, 93(5), 693-704.
    連結:
  68. Pihlajamaki, J., Boes, T., Kim, E. Y., Dearie, F., Kim, B. W., Schroeder, J., et al. (2009). Thyroid hormone-related regulation of gene expression in human fatty liver. J Clin Endocrinol Metab, 94(9), 3521-3529.
    連結:
  69. Poupeau, A., & Postic, C. (2011). Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1812(8), 995-1006.
    連結:
  70. Redman, L. M., & Ravussin, E. (2011). Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal, 14(2), 275-287.
    連結:
  71. Reeves, P. G., Nielsen, F. H., & Fahey, G. C., Jr. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr, 123(11), 1939-1951.
    連結:
  72. Repa, J. J., Berge, K. E., Pomajzl, C., Richardson, J. A., Hobbs, H., & Mangelsdorf, D. J. (2002). Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem, 277(21), 18793-18800.
    連結:
  73. Repa, J. J., Liang, G., Ou, J., Bashmakov, Y., Lobaccaro, J. M., Shimomura, I., et al. (2000). Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev, 14(22), 2819-2830.
    連結:
  74. Repa, J. J., & Mangelsdorf, D. J. (2000). The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol, 16, 459-481.
    連結:
  75. Rodgers, J. T., Lerin, C., Gerhart-Hines, Z., & Puigserver, P. (2008). Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett, 582(1), 46-53.
    連結:
  76. Roth, G. S., Lane, M. A., Ingram, D. K., Mattison, J. A., Elahi, D., Tobin, J. D., et al. (2002). Biomarkers of caloric restriction may predict longevity in humans. Science, 297(5582), 811.
    連結:
  77. Schultz, J. R., Tu, H., Luk, A., Repa, J. J., Medina, J. C., Li, L., et al. (2000). Role of LXRs in control of lipogenesis. Genes Dev, 14(22), 2831-2838.
    連結:
  78. Schuppan, D., & Schattenberg, J. M. (2013). Non-alcoholic steatohepatitis: Pathogenesis and novel therapeutic approaches. Journal of Gastroenterology and Hepatology, 28, 68-76.
    連結:
  79. Senanayake, G. V., Fukuda, N., Nshizono, S., Wang, Y. M., Nagao, K., Yanagita, T., et al. (2012). Mechanisms underlying decreased hepatic triacylglycerol and cholesterol by dietary bitter melon extract in the rat. Lipids, 47(5), 495-503.
    連結:
  80. Sengupta, S., Peterson, T. R., Laplante, M., Oh, S., & Sabatini, D. M. (2010). mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature, 468(7327), 1100-1104.
    連結:
  81. Shih, C.-C., Shlau, M.-T., Lin, C.-H., & Wu, J.-B. (2014). Momordica charantia Ameliorates Insulin Resistance and Dyslipidemia with Altered Hepatic Glucose Production and Fatty Acid Synthesis and AMPK Phosphorylation in High-fat-fed Mice. Phytotherapy Research, 28(3), 363-371.
    連結:
  82. Stienstra, R., Duval, C., Muller, M., & Kersten, S. (2007). PPARs, Obesity, and Inflammation. PPAR Res, 2007, 95974.
    連結:
  83. Takamura, T., Misu, H., Matsuzawa-Nagata, N., Sakurai, M., Ota, T., Shimizu, A., et al. (2008). Obesity upregulates genes involved in oxidative phosphorylation in livers of diabetic patients. Obesity (Silver Spring), 16(12), 2601-2609.
    連結:
  84. Tan, M.-J., Ye, J.-M., Turner, N., Hohnen-Behrens, C., Ke, C.-Q., Tang, C.-P., et al. (2008). Antidiabetic Activities of Triterpenoids Isolated from Bitter Melon Associated with Activation of the AMPK Pathway. Chemistry & Biology, 15(3), 263-273.
    連結:
  85. Tannapfel, A., Denk, H., Dienes, H.-P., Langner, C., Schirmacher, P., Trauner, M., et al. (2011). Histopathological diagnosis of non-alcoholic and alcoholic fatty liver disease. Virchows Archiv, 458(5), 511-523.
    連結:
  86. Tarling, E. J., & Edwards, P. A. (2011). ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci U S A, 108(49), 19719-19724.
    連結:
  87. Tolman, K. G., & Dalpiaz, A. S. (2007). Treatment of non-alcoholic fatty liver disease. Ther Clin Risk Manag, 3(6), 1153-1163.
    連結:
  88. Valenti, L., Bugianesi, E., Pajvani, U., & Targher, G. (2016). Nonalcoholic fatty liver disease: cause or consequence of type 2 diabetes? Liver Int.
    連結:
  89. Wahli, W., & Michalik, L. (2012). PPARs at the crossroads of lipid signaling and inflammation. Trends in Endocrinology & Metabolism, 23(7), 351-363.
    連結:
  90. Wang, D. Q. (2007). Regulation of intestinal cholesterol absorption. Annu Rev Physiol, 69, 221-248.
    連結:
  91. Wang, G., Bonkovsky, H. L., de Lemos, A., & Burczynski, F. J. (2015). Recent insights into the biological functions of liver fatty acid binding protein 1. J Lipid Res, 56(12), 2238-2247.
    連結:
  92. Wang, N., & Tall, A. R. (2003). Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler Thromb Vasc Biol, 23(7), 1178-1184.
    連結:
  93. Webb, S. J., Geoghegan, T. E., Prough, R. A., & Michael Miller, K. K. (2006). The Biological Actions of Dehydroepiandrosterone Involves Multiple Receptors. Drug Metabolism Reviews, 38(1-2), 89-116.
    連結:
  94. Xu, J., Cao, K., Li, Y., Zou, X., Chen, C., Szeto, I. M., et al. (2014). Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet. J Nutr, 144(4), 475-483.
    連結:
  95. Yen, P. H., Dung, D. T., Nhiem, N. X., Anh Hle, T., Hang, D. T., Yen, D. T., et al. (2014). Cucurbitane-type triterpene glycosides from the fruits of Momordica charantia. Nat Prod Commun, 9(3), 383-386.
    連結:
  96. Youle, R. J., & van der Bliek, A. M. (2012). Mitochondrial fission, fusion, and stress. Science, 337(6098), 1062-1065.
    連結:
  97. Yu, L., Li-Hawkins, J., Hammer, R. E., Berge, K. E., Horton, J. D., Cohen, J. C., et al. (2002). Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest, 110(5), 671-680.
    連結:
  98. Yu, Y., Zhang, X. H., Ebersole, B., Ribnicky, D., & Wang, Z. Q. (2013). Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice. Sci Rep, 3, 3142.
    連結:
  99. Zhao, W., Liu, L., Wang, Y., Mao, T., & Li, J. (2016). Effects of a combination of puerarin, baicalin and berberine on the expression of proliferator-activated receptor-gamma and insulin receptor in a rat model of nonalcoholic fatty liver disease. Exp Ther Med, 11(1), 183-190.
    連結:
  100. 周怡君(2010)。以脂肪與肌肉細胞模式評估山苦瓜水萃物暨其區分物對細胞汲取葡萄糖之影響與其機制探討。國立臺灣大學生命科學院生化科技學系。
    連結:
  101. 林德岳(2013)。山苦瓜萃取暨其酵素水解最佳化與三萜類成分之探討。國立臺灣大學生命科學院生化科技學系。
    連結:
  102. 許珊菁(2006)。鼠模式中高脂飲食、肥胖與之質調控基因之表現。國立臺灣大學微生物與生化學研究所。
    連結:
  103. 黃婷妮(2010)。山苦瓜萃物暨其區分物之腸泌素效應。國立臺灣大學生命科學院生化科技學系。
    連結:
  104. 蔣汶龍(2014)。探討山苦瓜對飲食誘導肥胖模式小鼠骨骼肌粒線體增殖之影響。國立臺灣大學生命科學院生化科技學系。
    連結:
  105. 謝婉郁(2005)。山苦瓜改善血糖血脂代謝異常之效應探討。國立臺灣大學微生物與生化學研究所。
    連結:
  106. Bellentani, S., Bedogni, G., Miglioli, L., & Tiribelli, C. (2004). The epidemiology of fatty liver. European Journal of Gastroenterology & Hepatology, 16(11), 1087-1093.
  107. Cave, M. C., Clair, H. B., Hardesty, J. E., Falkner, K. C., Feng, W., Clark, B. J., et al. (2016). Nuclear receptors and nonalcoholic fatty liver disease. Biochim Biophys Acta.
  108. 白依平(2012)。山苦瓜萃物暨其區分物及依些苦味分子對腸道內分泌細胞株 STC-1 分泌 GLP-1 之影響。國立臺灣大學生命科學院生化科技學系。
  109. 呂侃霓(2013)。以 C57BL/6J 小鼠模式研發血糖恆定調節之山苦瓜萃物。國立臺灣大學生命科學院生化科技學系。
  110. 蔡豐隆(2012)。山苦瓜萃取物經納豆菌 NTU-18 去醣基化作用之效果探討。國立臺灣大學生命科學院生化科技學系。
  111. 穆偉倢(2014)。山苦瓜上調 C57BL/6J 公鼠肝 Fgf21 mRNA 並誘發副睪脂褐化。國立臺灣大學生命科學院生化科技學系。
被引用次数
  1. 李世欽(2017)。探討 PPARα 促效劑對高脂飲食誘發小鼠代謝失調及情緒障礙之影響。臺灣大學生化科技學系學位論文。2017。1-156。 
  2. 劉又禎(2017)。初探山苦瓜萃取物之雄激素受體調節相關活性。臺灣大學生化科技學系學位論文。2017。1-123。