题名

超寬波段之低耗能矽基紅外光偵測器研究

并列篇名

Study of Silicon Based Infrared Photodetectors with Low Power Consumption and Ultrabroadband Working Capability

DOI

10.6342/NTU201702430

作者

徐隆泰

关键词

矽基紅外光偵測器 ; 蕭特基光二極體 ; 矽化鎳 ; 表面電漿共振 ; 光激發熱載子 ; Folwer theory ; 蕭特基能障 ; 金屬/矽基光偵測器 ; 弱光偵測 ; 寬波段偵測 ; 低耗能 ; Si-based photodetectors ; Schottky diode ; nickel silicide ; surface plasmon resonance ; hot electrons ; Fowler theory ; Schottky barrier ; metal/Si based photodetector ; low-intensity detection ; broadband working capability ; low power consumption

期刊名称

國立臺灣大學材料科學與工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

陳學禮

内容语文

繁體中文

中文摘要

本論文的目的在於開發寬波段且低耗能之紅外光偵測器。論文第一部分,提出背面照射式元件,藉由表面電漿共振現象與共振腔效應有效提升矽化鎳(nickel silicide, NiSi)元件於近紅外光波段的光學吸收值。表面電漿共振的衰逝波可激發矽化鎳內部的熱電子(hot electrons),使矽基元件在光子能量小於矽的間階能隙(Eg≈1.124 電子伏特)之光通訊波段仍可操作。熱電子的光電響應趨勢會遵守Fowler theory,隨著光子能量越小,元件的光響應度亦隨之變弱。矽化鎳/n型矽基板的蕭特基能障(Schottky barrier height, Ф_B)為0.65電子伏特,較低的蕭特基能障預期會有較高的光電流響應,但也會有暗電流過大、弱光偵測能力不佳等問題。因此,藉由離子佈植二氟化硼離子(BF2+)於n型矽基板,調高矽化鎳/n型矽基板的蕭特基能障,使熱電子無法跨越過蕭特基能障並累積在接面兩端,有利於電壓響應輸出,並分別討論元件在電流模式、電壓模式操作下,離子佈植的最佳化條件。當摻雜劑量為2x1012 ions/cm2二氟化硼離子到n型矽基板時,外加0.0025V偏壓,元件在1310奈米、1550奈米之光電流響應度分別高達14.01 mAW-1、10.83 mAW-1。當摻雜劑量為2x1014 ions/cm2之二氟化硼離子到n型矽基板時,元件位於1310奈米、1550奈米之光電壓響應度分別高達20.14 VW-1、13.89 VW-1。元件的光電壓輸出於弱光與強光下皆具有極佳的線性程度,具良好弱光偵測的能力。 從Folwer theory可知,當入射光的光子能量小於蕭特基能障,將無法貢獻光電流響應達到光偵測效果,金/n型矽基板的蕭特基能障為0.75電子伏特,亦即波長超過1650奈米將無法有效產生光電流,達到光偵測的目的。本論文的第二部分,我們提出正面照射式之超淺溝槽矽基結構元件,藉由表面電漿現象用下,使元件於3.25微米之共振波段具有窄波段、高吸收的特性。於光學模擬上,元件的模擬吸收峰值可高達95 %,吸收峰值的半高波寬約為50奈米,窄波段吸收的特性使得元件僅對於設計波段之入射光能有所反應,,將可避免接收其他波段之入射光能所造成的訊號誤判情況發生。當金屬吸收大量的入射光後,金屬膜的溫度上升並進而加熱金/n型矽基板的蕭特基接面,激發矽基板的價帶電子躍遷至導帶使接面兩端產生電壓差,進而貢獻光電壓響應;光學的高吸收特性也會使金屬內部產生大量光激發熱電子累積在接面兩端,產生光電壓響應。因此,即使入射光能量小於金/n型矽的蕭特基能障,在上述兩種效應的貢獻下,我們依然可以藉由光電壓輸出來達到紅外光偵測的目標,不被Fowler theory限制。於光電轉換特性上,當外加2.5mV之小偏壓,光電流響應度可達2.5x10-3 mAW-1;光電壓響應度則可達250 mVW-1。;此外,元件於弱光或強光照射下具有極佳的線性度,可偵測最低入射光功率密度為0.69 mW cm-2。 論文第三部分將延續前述的工作原理,並進一步提出背面照射元件架構之中紅外光偵測器。和第二部分的元件相比,此部分我們所提出之背面照射式深溝槽矽基結構元件具有寬波段、高吸收的特性,於模擬上,元件於3.25微米至10微米的吸收值皆可大於50 %,此種寬波段吸收之特性使得元件的工作波段可從3.25微米延伸至10微米,具有寬波段光能回收之能力。於光電轉換特性上,此元件於波長3.25微米、6微米、10微米之光電壓/光電流響應度分別為42.01mVW-1/2.23×10-3 mAW-1、28.05 mVW-1/4.4×10-3 mA W-1、76.2 mVW-1/7.80×10-3 mA W-1,展現出極寬波段之偵測能力;此外,當入射光波長為10微米時,其於弱光或強光照射下皆有不錯的線性程度,可量測到最低入射光功率密度為為1.71mW cm-2。於論文的第二、三部分所提出之元件光電量測皆於室溫下進行,符合低耗能之期許。

英文摘要

The goal of this thesis is to develop the infrared (IR) photodetectors featuring low power consumption and capability of detecting over broad bandwidth. In the first part of thesis, we propose back-illuminated devices that take advantage of surface plasmon resonance phenomena and three-dimensional cavity effects to improve the optical absorption of deep trenched nickel silicide/n-silicon devices in near infrared (NIR) regime. The devices exhibit good rectification properties to collect hot electrons arising from plasmon decay for photodetection well below the bandgap of silicon. In general, the spectral response of hot electron-based device follows Fowler theory. The responsivity becomes lower as the photon energy of incident light decreased. The Schottky barrier height of original NiSi/n-Si device is approximately 0.65eV. Such low barrier height of structured device performed photocurrent-responsivity in IR regime. However, devices also perform high dark current that exhibit insufficient detection capability. Therefore, we propose the BF2+ ion implantation process to dope Si for tuning the barrier height of NiSi/n-Si-based device. As the barrier height of devices increased, the dark current of device would decrease and more photo-induced hot electron would accumulate near the junction instead of passing the barrier. Therefore, the doped devices could perform high detectivity and photovoltage. In this thesis, we also investigate the optimized conditions of implantation in NiSi/n-Si-based devices. As we doped 2x1012 ions/cm2 in n-Si wafer, under 2.5mV bias voltage, the responsivity of devices in current mode are up to 14.01 mA W-1 and 10.83 mA W-1 in 1310nm and 1550nm, respectively. As we doped 2x1014 ions/cm2 in n-Si wafer, the responsivity of devices in voltage mode are up to 20.14 V W-1 and 13.89 V W-1 in 1310nm and 1550nm, respectively. Besides, the devices also perform a high degree of photo-response linearity. According to the Fowler theory, the hot electrons cannot contribute photocurrent if the energy of incidental photon is lower the Schottky barrier height of devices. For example, the Schottky barrier height of Au/n-Si is approximately 0.75eV. The incident light having a wavelength longer than 1650nm cannot contribute the photocurrent. In the second part of thesis, we propose the front-illuminated devices of shallow trench/thin metal (STTM) structures for photodection in mid IR regime. The STTM devices take advantage of SPR effect to tune absorption peak in infrared regime. In optical simulation, the absorption of devices could up to 95%, the full width at half maximum (FWHM) of absorption peak is approximately 50nm. The characteristic of high absorption in narrowband is useful for photodetection of incident light in the resonance of spectral regime. After the metal layer absorb mid IR light efficiently, the temperature of metal layer would be increased, the Au/n-Si Schottky was heated and generate the difference of voltage near the junction. According to the Fowler theory, the photo-induced hot electron accumulate near the junction instead of passing the Schottky barrier, contributing photovoltage near the junction. Based on above discussion of photovoltage, the detection bandwidth would not restrict by Fowler theory. We can extend the detection bandwidth to 3.25 µm. With 2.5mV bias voltage, the photocurrent-responsivity of device is 2.5x10-3 mA W-1 in 3.25µm. The voltage-responsivity of device can up to 250 mV W-1. The devices also show linear photovoltage-response in not only high power of incident light region but also the low-intensity detection is 0.69 mWcm-2 at the wavelength of 3.25µm. In the third part of thesis, we extend the working mechanism in the second part of thesis, we propose the back-illuminated devices of deep trench/thin metal (DTTM). Compared with the devices in the second part of thesis, the back-illuminated DTTM devices display broadband and high absorption in mid IR regime. In optical simulation, the absorption of DTTM is higher than 50% from 3.25 µm to 10µm, so we can extend the detection bandwidth from 3.25 µm to 10µm. The devices show the ultra-broadband working capability. The photovoltage/photocurrent-responsivity mode can up to 42.01mVW-1/2.23×10-3 mAW-1, 28.05 mVW-1/4.4×10-3 mA W-1, 76.2 mVW-1/7.80×10-3 mA W-1 at the wavelength of 3.25µm, 6µm, 10µm respectively. The devices also show linear photovoltage-response in not only in high intensity of incident light but also low power of incident region and the low-intensity detection is 1.71 mWcm-2 at the wavelength 10µm. Additionally, the devices can work at room temperature (T=300 K), which reach expectation of low power consumption.

主题分类 工學院 > 材料科學與工程學系
工程學 > 工程學總論
参考文献
  1. 8. Fan, H. Y., and Ramdas, A. K., "Infrared Absorption and Photoconductivity in Irradiated Silicon", Journal of Applied Physics, 30, pp. 1127-1134, 1959.
    連結:
  2. 9. J. Stein, F. L. Vook, A. Borders, Appl. Phys. Lett. 14, 328 (1969)
    連結:
  3. 14. R. H. Fowler, Phys. Rev. 38, 45–56 (1931).
    連結:
  4. 15. V. E. Vickers, Applied Optics 10, 2190–2192 (1971).
    連結:
  5. 19. P. Berini, A. Olivieri, and C. Chen, Nanotechnology 23, 444011 (2012).
    連結:
  6. 21. S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, Applied Physics Letters 100, 061109 (2012).
    連結:
  7. 28. S. T. Fard, K. Murray, M. Caverley, V. Donzella, J. Flueck- iger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, Opt. Express 22, 28517 (2014).
    連結:
  8. 32. W.Herschel, Experiment on the refrangibility of the invisible rays of the suns.Trans.Roy.Soc.London (1800).
    連結:
  9. 33. R.A. Smith, F.E. Jones, R.P. Chasmar, The Detection and Measurement of Infrared Radiation, Clarendon, Oxford, 1958.
    連結:
  10. 35. E.S.Barr, Historical survey of the early development of the infrared spectralregion,Am.J.Phys.28(1960)42–54.E
    連結:
  11. 37. T.W. Case, Notes on the change of resistance of certain substratedinlight, Phys.Rev.9 (1917)305-310.
    連結:
  12. 38. Boggess, T. F., Bohnert, K. M., Mansour, K., Moss, S. C., Boyd, I. W., Smirl, A. L., Simultaneous measurement of two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon, IEEE J. Quantum Electron., 22, 360-368(1986).
    連結:
  13. 39. M.Razeghi, Current status and future trends of infrared detectors, Opto Electro.Rev, p155-p194 (1998).
    連結:
  14. 40. Mendes, M.J., Luque, A., Tobías, I. & Martí, A. Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells. Appl. Phys. Lett. 95, 071105 (2009).
    連結:
  15. 41. Atwater, H.A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).
    連結:
  16. 42. Zhao, G., Kozuka, H. & Yoko, T. Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 277, 147–154 (1996).
    連結:
  17. 43. Tian, Y. & Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 1810–1811 (2004).
    連結:
  18. 44. Tian, Y. & Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005).
    連結:
  19. 45. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).
    連結:
  20. 46. Wang, F. & Melosh, N.A. Plasmonic energy collection through hot carrier extraction. Nano Lett. 11, 5426–5430 (2011).
    連結:
  21. 47. Linic, S., Christopher, P. & Ingram, D.B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).
    連結:
  22. 48. Nishijima, Y. et al. Near-infrared plasmon-assisted water oxidation. J.Phys. Chem. Lett. 3, 1248–1252 (2012).
    連結:
  23. 49. Du, L., Furube, A., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. J.Photochem. Photobiol. C 15, 21–30 (2013)
    連結:
  24. 50. Knight, M.W. et al. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 13, 1687–1692 (2013).
    連結:
  25. 51. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotechnol. 8, 247–251 (2013)
    連結:
  26. 52. Semenov, A.D., Gol’tsman, G.N. & Sobolewski, R. Hot-electron effect in superconductors and its applications for radiation sensors. Supercond. Sci. Technol. 15, R1 (2002).
    連結:
  27. 53. Hertz, H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann. Phys. 267, 983–1000 (1887).
    連結:
  28. 54. Gadzuk, J.W. On the detection of chemically induced hot electrons in surface processes: from X-ray edges to Schottky barriers. J.Phys. Chem. B 106, 8265–8270 (2002).
    連結:
  29. 55. Nienhaus, H. Electronic excitations by chemical reactions on metal surfaces. Surf. Sci. Rep. 45, 1–78 (2002).
    連結:
  30. 56. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films. Nature 353, 737–740 (1991).
    連結:
  31. 57. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).
    連結:
  32. 58. Sönnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).
    連結:
  33. 59. Hofmann, J. & Steinmann, W. Plasma resonance in the photoemission of silver. Phys. Status Solidi B 30, K53–K56 (1968).
    連結:
  34. 60. Endriz, J.G. & Spicer, W.E. Surface-plasmon-one-electron decay and its observation in photoemission. Phys. Rev. Lett. 24, 64–68 (1970).
    連結:
  35. 61. Lehmann, J. et al. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett. 85, 2921–2924 (2000).
    連結:
  36. 62. Inagaki, T., Kagami, K. & Arakawa, E. T. Photoacoustic observation of nonradiative decay of surface plasmons in silver. Phys. Rev. B 24, 3644–3646 (1981).
    連結:
  37. 63. White, T.P. & Catchpole, K.R. Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Appl. Phys. Lett. 101, 073905 (2012).
    連結:
  38. 64. Berglund, C.N. & Spicer, W.E. Photoemission studies of copper and silver: experiment. Phys. Rev. 136, A1044–A1064 (1964).
    連結:
  39. 65. Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011).
    連結:
  40. 66. Moskovits, M. Hot electrons cross boundaries. Science 332, 676–677 (2011).
    連結:
  41. 67. Ohko, Y. et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nature Mater. 2, 29–31 (2003).
    連結:
  42. 68. Hirakawa, T. & Kamat, P.V Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir 20, 5645–5647 (2004).
    連結:
  43. 69. Lana-Villarreal, T. & Gómez, R. Tuning the photoelectrochemistry of nanoporous anatase electrodes by modification with gold nanoparticles: development of cathodic photocurrents. Chem. Phys. Lett. 414, 489–494 (2005).
    連結:
  44. 70. Yu, K., Tian, Y. & Tatsuma, T. Size effects of gold nanaoparticles on plasmoninduced photocurrents of gold–TiO2 nanocomposites. Phys. Chem. Chem. Phys. 8, 5417–5420 (2006).
    連結:
  45. 71. Sakai, N., Fujiwara, Y., Takahashi, Y. & Tatsuma, T. Plasmon-resonance-based generation of cathodic photocurrent at electrodeposited gold nanoparticles coated with TiO2 films. ChemPhysChem 10, 766–769 (2009).
    連結:
  46. 72. Kowalska, E., Abe, R. & Ohtani, B. Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. Chem. Commun. 241–243 (2009).
    連結:
  47. 73. Toyoda, T., Tsugawa, S. & Shen, Q. Photoacoustic spectra of Au quantum dots ansorbed on nanostructed TiO2 electrodes together with the photoelectrochemical current characteristics. J.Appl. Phys. 105, 034314(2009).
    連結:
  48. 74. Gomes Silva, C., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2010)
    連結:
  49. 75. Kowalska, E., Mahaney, Abe, R. & Ohtani, B. Visible light induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 12, 2344–2355 (2010).
    連結:
  50. 76. Ide, Y., Matsuoka, M. & Ogawa, M. Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. J. Am. Chem. Soc. 132, 16762–16764 (2010).
    連結:
  51. 77. Valverde-Aguilar, G., García-Macedo, J. A., Rentería-Tapia, V. & AguilarFranco, M. Photoconductivity studies on amorphous and crystalline TiO2 films doped with gold nanoparticles. Appl. Phys. A 103, 659–663 (2011).
    連結:
  52. 78. Ingram, D. B., Christopher, P., Bauer, J. L. & Linic, S. Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal. 1, 1441–1447 (2011).
    連結:
  53. 79. Tanaka, A. et al. Gold–titanium (IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: correlation between physical properties and photocatalytic activities. Langmuir 28, 13105–13111 (2012).
    連結:
  54. 80. Shi, X., Ueno, K., Takabayashi, N. & Misawa, H. Plasmon-enhanced photocurrent generation and water oxidation with a gold nanoislandloaded titanium dioxide photoelectrode. J. Phys. Chem. C 117, 2494–2499 (2013)
    連結:
  55. 81. Gong, D. et al. Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis. J. Solid State Chem. 189, 117–122 (2012).
    連結:
  56. 82. Sakai, N., Sasaki, T., Matsubara, K. & Tatsuma, T. Layer-by-layer assembly of gold nanoparticles with titania nanosheets: control of plasmon resonance and photovoltaic properties. J. Mater. Chem. 20, 4371–4378 (2010).
    連結:
  57. 83. Shiraishi, Y. et al. Platinum nanoparticles supported on anatase titanium dioxide as highly active catalysts for aerobic oxidation under visible light irradiation. ACS Catal. 2, 1984–1992 (2012).
    連結:
  58. 84. Tian, Y., Wang, X., Zhang, D., Shi, X. & Wang, S. Effects of electron donors on the performance of plasmon-induced photovoltaic cell. J. Photochem. Photobiol., A 199, 224–229 (2008).
    連結:
  59. 85. Tian, Y., Shi, X., Lu, C., Wang, X. & Wang, S. Charge separation in solid-state gold nanoparticles-sensitized photovoltaic cell. Electrochem. Commun. 11, 1603–1605 (2009).
    連結:
  60. 86. Du, L. et al. Plasmon-induced charge separation and recombination dynamics in gold−TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C 113, 6454–6462 (2009).
    連結:
  61. 87. Inouye, H., Tanaka, K., Tanahashi, I. & Hirao, K. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B 57, 11334–11340 (1998).
    連結:
  62. 88. Hövel, H., Fritz, S., Hilger, A., Kreibig, U. & Vollmer, M. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178–18188 (1993).
    連結:
  63. 89. Stoletow, M., On a kind of electrical current produced by ultra-violet rays, Phil. Mag. Ser. 5 26, pp. 317-319, (1888).
    連結:
  64. 90. Peters, D., An infrared detector utilizing internal photoemission, Proc. IEEE 55, pp. 704-705 (1967).
    連結:
  65. 91. Akbari, A. & Berini, P., "Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide", Appl. Phys. Lett. 95, 021104 (2009).
    連結:
  66. 92. Scales, C. & Berini, P., "Thin-film Schottky barrier photodetector models", IEEE J. Quantum Electron. pp. 633-643 (2010).
    連結:
  67. 93. Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U., "Locally oxidized silicon surface-plasmon Schottky detector for telecom regime", Nano Lett. 11, pp. 2219-2224 (2011).
    連結:
  68. 94. Liu, M. & Chou, S., Internal emission metal–semiconductor–metal photodetectors on Si and GaAs for 1.3 μm detection, Appl. Phys. Lett. 66, pp. 2673-2675(1995).
    連結:
  69. 95. W.E,Spicer,Photoemissive, photoconductive, and optical absorption studies of alkali–antimony compounds,Appl.Phys (1977)
    連結:
  70. 96. Li, W., Valentine, J.Nanophotonics, 6, 177−191 (2017).
    連結:
  71. 97. Marco Bernardi, Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nature Commun.6,7044 (2015).
    連結:
  72. 98. Sobhani, Aet al.Narrowband photodetection in the near-infrared with aplasmon-induced hot electron device.Nature Commun.4,1643 (2013).
    連結:
  73. 99. Li, W., Valentine, J.Nano Lett, 14, 3510−3514 (2014).
    連結:
  74. 100. Li, W.; Coppens, Z. J.; Besteiro, L. V.; Wang, W.; Govorov, A. O.Valentine, J. Circularly polarized light detection with hot electrons inchiral plasmonic metamaterials.Nat. Commun,6, 8379 (2015).
    連結:
  75. 101. Giugni, A. et al., "Hot-electron nanoscopy using adiabatic compression of surface plasmons", Nature Nanotech. 8, pp. 845-852 (2013).
    連結:
  76. 102. Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U., Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band, Opt. Express 20, pp. 28594-28602 (2012).
    連結:
  77. 103. Faris, S., Gustafson, T. & Wiesner, J., Detection of optical and infrared radiation with DC-biased electron-tunneling metal–barrier–metal diodes, IEEE J. Quantum Electron. 9, pp. 737-745 (1973).
    連結:
  78. 104. Heiblum, M., Wang, S., Whinnery, J. R. & Gustafson, T. K., "Characteristics of integrated MOM junctions at dc and at optical frequencies", IEEE J. Quantum Electron. 14, pp. 159-169 (1978).
    連結:
  79. 105. Shalaev, V., Douketis, C., Stuckless, J. & Moskovits, M., "Light-induced kinetic effects in solids", Phys. Rev. B 53, pp. 11388-11402 (1996).
    連結:
  80. 106. Kovacs, D., Winter, J., Meyer, S., Wucher, A. & Diesing, D., "Photo and particle induced transport of excited carriers in thin film tunnel junctions", Phys. Rev. B 76, 235408 (2007).
    連結:
  81. 107. Shalaev, V., Douketis, C., Stuckless, J. & Moskovits, M., "Light-induced kinetic effects in solids", Phys. Rev. B 53, pp. 11388-11402, (1996).
    連結:
  82. 108. Chalabi, H., Schoen, D. & Brongersma, M., Hot-electron photodetection with a plasmonic nanostripe antenna, Nano Lett. 14, pp. 1374-1380 (2014).
    連結:
  83. 110. M. E. Alperin, T. C. Holloway, R. A. Haken, et al., Development of the Self-Aligned Titanium Silicide Process for VLSI Applications, IEEE Transactions on Electron Devices, 32, 2, pp. 141-149 (1985).
    連結:
  84. 111. H. Iwai, T. Ohguro, S. Ohmi, “NiSi Salicide Technology for Scaled CMOS,” Microelectronic Engineering, 60, 1-2, pp. 157-169 (2002).
    連結:
  85. 112. T. Morimoto, T. Ohguro, H. S. Momose, et al., “Self-Aligned Nickel-Mono-Silicide Technology for High-Speed Deep-Submicrometer Logic CMOS ULSI,” IEEE Transactions on Electron Devices, 42, 5, pp. 915-922, May (1995).
    連結:
  86. 113. C. S. Woo, K. W. Terrill, and P. K. Vasudev, “Two-dimensional analytic modeling of very thin SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 37, no. 9, pp. 1999-2006, (1990).
    連結:
  87. 114. S.-L. Zhang and M. Östling,Metal silicides in CMOS technology: past, present and future trends, Critical reviews in solid state and materials science, vol. 28, no. 1, pp. 1- 129. (1987)
    連結:
  88. 115. C. Wang, J. P. Snyder, J. R. Tucker, “Sub-40nm PtSi Schottky Source/Drain Metal-Oxide-Semiconductor Field-Effect-Transistor,” Applied Physics Letters, 74, 8, pp. 1174-1176, 1999.
    連結:
  89. 116. Q. T. Zhao, F. Klinkhammer, M. Dolle, et al., “Nanometer Patterning of Epitaxial CoSi2/Si(100) for Ultrashort Channel Schottky Barrier Metal-Oxide-Semiconductor Field Effect Transistors,” Applied Physics Letters, 74, 3, pp. 454-456, 1999.
    連結:
  90. 117. Y. Choi, L. Chang, P. Ranade, J. Lee, D. Ha, S. Balasubramanian, A. Agarwal, M. Ameen, , FinFET process refinement for improved mobility and gate work function engineering, IEDM Tech. Dig., pp. 259-262, (2002).
    連結:
  91. 118. Y. Choi, T.-J. King, and C. Hu, “Nanoscale CMOS spacer FinFET for the terabit era,” IEEE Electron device Lett., vol. 23, no. 1, pp. 25-27, (2002).
    連結:
  92. 120. The modulation of Schottky barrier height of NiSi/n-Si Schottky diodes by silicide as diffusion source technique, An Xia et al. Chinese Physics, P4465 (2009).
    連結:
  93. 121. Z. Qiu, Z. Zhang, M. Ostling, and S.-L. Zhang, A comparative study of two different schemes to dopant segregation at NiSi/Si and PtSi/Si interfaces for Schottky barrier height lowering, IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 396–403, Jan. (2008).
    連結:
  94. 122. 林耕德,寬波段與低耗能之光-電-熱偵測與轉換元件研究,國立台灣大學材料科學與工程學研究所博士論文,2016
    連結:
  95. 124. B, Abeles, Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures, Phys. Rev. 131, 1906 – Published 1 September (1963)
    連結:
  96. 125. Chaochao Fu. Materials 2016, 9(5), 315, Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing.
    連結:
  97. 1. Neamen, D.A., Semiconductor physics and devices: basic principles, McGraw-Hill, 2003.
  98. 2. Sze, S. M., Ng, K. K., Physics of Semiconductor Devices, Wiley, Hoboken, NJ, ed. 3, 2007.
  99. 3. Mayer, J. W. and Lau, S. S, " Silicides - an introduction", in Silicide Technology for Integrated Circuits.: The IEE, 2004, pp. 15-48
  100. 4. Dash, W. C. and Rewman, R., Physical review, Vol.99. pp. 1151-1155, 1955.
  101. 5. Solt, K., Melchior, H., Kroth, U., Kuschnerus, P., Persch, V., Rabus, H., Richter, M., and G. Ulm, Appl. Phys. Lett. 69, pp. 3662–3664, 1996.
  102. 6. An, X., Liu, F., Jung, Y. J. and Kar, S., Nano Lett, 13, 909, 2013.
  103. 7. Kikkawa, T., Inoue, K. and Imai, K., "Cobalt silicide technology", in Silicide Technology for Integrated Circuits. London, United Kingdom: The Institution of Electrical Engineers, 2004.
  104. 10. F. L. Vook, H. J. Stein, Radiation Effects 2, 23 (1969).
  105. 11. F. Logan, P. E. Jessop, A. P. Knights, R. M Gwilliam,M. P. Halsall, Proc. IEEE A-MRS, Austrailia,IMC2 (2008).
  106. 12. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, IEEE Photon. Technol. Lett. 19, 152 (2007).
  107. 13. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Ka ̈rtner, and T. M. Lyszczarz, Opt. Express 15, 16886 (2007).
  108. 16. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L.Sirleto, Optics Express 20, 12599–12609 (2012).
  109. 17. B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B.Khurgin, and U. Levy, Optica 2, 335–338 (2015).
  110. 18. M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, Optics Express 21, 28072–28082 (2013).
  111. 20. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, Optics Express, 20, 28594–28602 (2012).
  112. 22. M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, Scientific Report 4(7103), 1–5 (2014).
  113. 23. M. Amirmazlaghani, F. Raissi, O. Habibpour, J. Vukusic, and J. Stake, IEEE J. of Quant. Elect. 49, 589–594 (2013).
  114. 24. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, Nano Lett. 16, 3005–3013 (2016).
  115. 25. P. Vabbina, N. Choudhary, A.Chowdhury, R. Sinha, M. Karabiyik, S. Das, W. Choi, N. Palaoi, and N. Pala, ACS Appl. Mater. Interfaces 7, 15206–15213 (2015).
  116. 26. J. K. Doylend, P. E. Jessop, and A. P. Knights, Opt. Express 18, 14671 (2010).
  117. 27. J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, J. of Nanophot. 5-1, 059507 (2011).
  118. 29. Y. Li, S. Feng, Y. Zhang, and A. W. Poon, Opt. Lett. 38, 5200 (2013).
  119. 30. X. Li, Z. Li, X. Xiao, H. Xu, J. Yu, and Y. Yu, Phot. Tech. Lett. 27, 729 (2015).
  120. 31. J. J. Ackert, A. P. Knights, M. Fiorentino, R. Beausoleil, and P. E. Jessop, Optical Interconnects Conference 76(2012).
  121. 34. P.W. Kruse, L.D. McGlauchlin, R.B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962.
  122. 36. E.S.Barr,Theinfraredpioneers––II.MacedonioMelloni,InfraredPhys.2(1962)67–73.
  123. 109. Lin, K.-T.; Chen, H.-L.; Lai, Y.-S.; Yu, C.-C.Nat. Commun.,5, 3288 (2014).
  124. 119. Marcel V. Migeotte, Phys. Rev. 73, 519 (1948); R. R. McMath, O. C. Mohler, and L. Goldberg, Phys. Rev. 73, 1203 (1948).
  125. 123. 洪博淵,極寬波段之高效率低耗能之金屬矽化物/矽基光偵測器研究,國立台灣大學材料科學與工程學研究所碩士論文,2015