参考文献
|
-
8. Fan, H. Y., and Ramdas, A. K., "Infrared Absorption and Photoconductivity in Irradiated Silicon", Journal of Applied Physics, 30, pp. 1127-1134, 1959.
連結:
-
9. J. Stein, F. L. Vook, A. Borders, Appl. Phys. Lett. 14, 328 (1969)
連結:
-
14. R. H. Fowler, Phys. Rev. 38, 45–56 (1931).
連結:
-
15. V. E. Vickers, Applied Optics 10, 2190–2192 (1971).
連結:
-
19. P. Berini, A. Olivieri, and C. Chen, Nanotechnology 23, 444011 (2012).
連結:
-
21. S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, Applied Physics Letters 100, 061109 (2012).
連結:
-
28. S. T. Fard, K. Murray, M. Caverley, V. Donzella, J. Flueck- iger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, Opt. Express 22, 28517 (2014).
連結:
-
32. W.Herschel, Experiment on the refrangibility of the invisible rays of the suns.Trans.Roy.Soc.London (1800).
連結:
-
33. R.A. Smith, F.E. Jones, R.P. Chasmar, The Detection and Measurement of Infrared Radiation, Clarendon, Oxford, 1958.
連結:
-
35. E.S.Barr, Historical survey of the early development of the infrared spectralregion,Am.J.Phys.28(1960)42–54.E
連結:
-
37. T.W. Case, Notes on the change of resistance of certain substratedinlight, Phys.Rev.9 (1917)305-310.
連結:
-
38. Boggess, T. F., Bohnert, K. M., Mansour, K., Moss, S. C., Boyd, I. W., Smirl, A. L., Simultaneous measurement of two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon, IEEE J. Quantum Electron., 22, 360-368(1986).
連結:
-
39. M.Razeghi, Current status and future trends of infrared detectors, Opto Electro.Rev, p155-p194 (1998).
連結:
-
40. Mendes, M.J., Luque, A., Tobías, I. & Martí, A. Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells. Appl. Phys. Lett. 95, 071105 (2009).
連結:
-
41. Atwater, H.A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).
連結:
-
42. Zhao, G., Kozuka, H. & Yoko, T. Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 277, 147–154 (1996).
連結:
-
43. Tian, Y. & Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 1810–1811 (2004).
連結:
-
44. Tian, Y. & Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005).
連結:
-
45. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).
連結:
-
46. Wang, F. & Melosh, N.A. Plasmonic energy collection through hot carrier extraction. Nano Lett. 11, 5426–5430 (2011).
連結:
-
47. Linic, S., Christopher, P. & Ingram, D.B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).
連結:
-
48. Nishijima, Y. et al. Near-infrared plasmon-assisted water oxidation. J.Phys. Chem. Lett. 3, 1248–1252 (2012).
連結:
-
49. Du, L., Furube, A., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. J.Photochem. Photobiol. C 15, 21–30 (2013)
連結:
-
50. Knight, M.W. et al. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 13, 1687–1692 (2013).
連結:
-
51. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotechnol. 8, 247–251 (2013)
連結:
-
52. Semenov, A.D., Gol’tsman, G.N. & Sobolewski, R. Hot-electron effect in superconductors and its applications for radiation sensors. Supercond. Sci. Technol. 15, R1 (2002).
連結:
-
53. Hertz, H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann. Phys. 267, 983–1000 (1887).
連結:
-
54. Gadzuk, J.W. On the detection of chemically induced hot electrons in surface processes: from X-ray edges to Schottky barriers. J.Phys. Chem. B 106, 8265–8270 (2002).
連結:
-
55. Nienhaus, H. Electronic excitations by chemical reactions on metal surfaces. Surf. Sci. Rep. 45, 1–78 (2002).
連結:
-
56. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films. Nature 353, 737–740 (1991).
連結:
-
57. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).
連結:
-
58. Sönnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).
連結:
-
59. Hofmann, J. & Steinmann, W. Plasma resonance in the photoemission of silver. Phys. Status Solidi B 30, K53–K56 (1968).
連結:
-
60. Endriz, J.G. & Spicer, W.E. Surface-plasmon-one-electron decay and its observation in photoemission. Phys. Rev. Lett. 24, 64–68 (1970).
連結:
-
61. Lehmann, J. et al. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett. 85, 2921–2924 (2000).
連結:
-
62. Inagaki, T., Kagami, K. & Arakawa, E. T. Photoacoustic observation of nonradiative decay of surface plasmons in silver. Phys. Rev. B 24, 3644–3646 (1981).
連結:
-
63. White, T.P. & Catchpole, K.R. Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Appl. Phys. Lett. 101, 073905 (2012).
連結:
-
64. Berglund, C.N. & Spicer, W.E. Photoemission studies of copper and silver: experiment. Phys. Rev. 136, A1044–A1064 (1964).
連結:
-
65. Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011).
連結:
-
66. Moskovits, M. Hot electrons cross boundaries. Science 332, 676–677 (2011).
連結:
-
67. Ohko, Y. et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nature Mater. 2, 29–31 (2003).
連結:
-
68. Hirakawa, T. & Kamat, P.V Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir 20, 5645–5647 (2004).
連結:
-
69. Lana-Villarreal, T. & Gómez, R. Tuning the photoelectrochemistry of nanoporous anatase electrodes by modification with gold nanoparticles: development of cathodic photocurrents. Chem. Phys. Lett. 414, 489–494 (2005).
連結:
-
70. Yu, K., Tian, Y. & Tatsuma, T. Size effects of gold nanaoparticles on plasmoninduced photocurrents of gold–TiO2 nanocomposites. Phys. Chem. Chem. Phys. 8, 5417–5420 (2006).
連結:
-
71. Sakai, N., Fujiwara, Y., Takahashi, Y. & Tatsuma, T. Plasmon-resonance-based generation of cathodic photocurrent at electrodeposited gold nanoparticles coated with TiO2 films. ChemPhysChem 10, 766–769 (2009).
連結:
-
72. Kowalska, E., Abe, R. & Ohtani, B. Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. Chem. Commun. 241–243 (2009).
連結:
-
73. Toyoda, T., Tsugawa, S. & Shen, Q. Photoacoustic spectra of Au quantum dots ansorbed on nanostructed TiO2 electrodes together with the photoelectrochemical current characteristics. J.Appl. Phys. 105, 034314(2009).
連結:
-
74. Gomes Silva, C., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2010)
連結:
-
75. Kowalska, E., Mahaney, Abe, R. & Ohtani, B. Visible light induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 12, 2344–2355 (2010).
連結:
-
76. Ide, Y., Matsuoka, M. & Ogawa, M. Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. J. Am. Chem. Soc. 132, 16762–16764 (2010).
連結:
-
77. Valverde-Aguilar, G., García-Macedo, J. A., Rentería-Tapia, V. & AguilarFranco, M. Photoconductivity studies on amorphous and crystalline TiO2 films doped with gold nanoparticles. Appl. Phys. A 103, 659–663 (2011).
連結:
-
78. Ingram, D. B., Christopher, P., Bauer, J. L. & Linic, S. Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal. 1, 1441–1447 (2011).
連結:
-
79. Tanaka, A. et al. Gold–titanium (IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: correlation between physical properties and photocatalytic activities. Langmuir 28, 13105–13111 (2012).
連結:
-
80. Shi, X., Ueno, K., Takabayashi, N. & Misawa, H. Plasmon-enhanced photocurrent generation and water oxidation with a gold nanoislandloaded titanium dioxide photoelectrode. J. Phys. Chem. C 117, 2494–2499 (2013)
連結:
-
81. Gong, D. et al. Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis. J. Solid State Chem. 189, 117–122 (2012).
連結:
-
82. Sakai, N., Sasaki, T., Matsubara, K. & Tatsuma, T. Layer-by-layer assembly of gold nanoparticles with titania nanosheets: control of plasmon resonance and photovoltaic properties. J. Mater. Chem. 20, 4371–4378 (2010).
連結:
-
83. Shiraishi, Y. et al. Platinum nanoparticles supported on anatase titanium dioxide as highly active catalysts for aerobic oxidation under visible light irradiation. ACS Catal. 2, 1984–1992 (2012).
連結:
-
84. Tian, Y., Wang, X., Zhang, D., Shi, X. & Wang, S. Effects of electron donors on the performance of plasmon-induced photovoltaic cell. J. Photochem. Photobiol., A 199, 224–229 (2008).
連結:
-
85. Tian, Y., Shi, X., Lu, C., Wang, X. & Wang, S. Charge separation in solid-state gold nanoparticles-sensitized photovoltaic cell. Electrochem. Commun. 11, 1603–1605 (2009).
連結:
-
86. Du, L. et al. Plasmon-induced charge separation and recombination dynamics in gold−TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C 113, 6454–6462 (2009).
連結:
-
87. Inouye, H., Tanaka, K., Tanahashi, I. & Hirao, K. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B 57, 11334–11340 (1998).
連結:
-
88. Hövel, H., Fritz, S., Hilger, A., Kreibig, U. & Vollmer, M. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178–18188 (1993).
連結:
-
89. Stoletow, M., On a kind of electrical current produced by ultra-violet rays, Phil. Mag. Ser. 5 26, pp. 317-319, (1888).
連結:
-
90. Peters, D., An infrared detector utilizing internal photoemission, Proc. IEEE 55, pp. 704-705 (1967).
連結:
-
91. Akbari, A. & Berini, P., "Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide", Appl. Phys. Lett. 95, 021104 (2009).
連結:
-
92. Scales, C. & Berini, P., "Thin-film Schottky barrier photodetector models", IEEE J. Quantum Electron. pp. 633-643 (2010).
連結:
-
93. Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U., "Locally oxidized silicon surface-plasmon Schottky detector for telecom regime", Nano Lett. 11, pp. 2219-2224 (2011).
連結:
-
94. Liu, M. & Chou, S., Internal emission metal–semiconductor–metal photodetectors on Si and GaAs for 1.3 μm detection, Appl. Phys. Lett. 66, pp. 2673-2675(1995).
連結:
-
95. W.E,Spicer,Photoemissive, photoconductive, and optical absorption studies of alkali–antimony compounds,Appl.Phys (1977)
連結:
-
96. Li, W., Valentine, J.Nanophotonics, 6, 177−191 (2017).
連結:
-
97. Marco Bernardi, Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nature Commun.6,7044 (2015).
連結:
-
98. Sobhani, Aet al.Narrowband photodetection in the near-infrared with aplasmon-induced hot electron device.Nature Commun.4,1643 (2013).
連結:
-
99. Li, W., Valentine, J.Nano Lett, 14, 3510−3514 (2014).
連結:
-
100. Li, W.; Coppens, Z. J.; Besteiro, L. V.; Wang, W.; Govorov, A. O.Valentine, J. Circularly polarized light detection with hot electrons inchiral plasmonic metamaterials.Nat. Commun,6, 8379 (2015).
連結:
-
101. Giugni, A. et al., "Hot-electron nanoscopy using adiabatic compression of surface plasmons", Nature Nanotech. 8, pp. 845-852 (2013).
連結:
-
102. Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U., Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band, Opt. Express 20, pp. 28594-28602 (2012).
連結:
-
103. Faris, S., Gustafson, T. & Wiesner, J., Detection of optical and infrared radiation with DC-biased electron-tunneling metal–barrier–metal diodes, IEEE J. Quantum Electron. 9, pp. 737-745 (1973).
連結:
-
104. Heiblum, M., Wang, S., Whinnery, J. R. & Gustafson, T. K., "Characteristics of integrated MOM junctions at dc and at optical frequencies", IEEE J. Quantum Electron. 14, pp. 159-169 (1978).
連結:
-
105. Shalaev, V., Douketis, C., Stuckless, J. & Moskovits, M., "Light-induced kinetic effects in solids", Phys. Rev. B 53, pp. 11388-11402 (1996).
連結:
-
106. Kovacs, D., Winter, J., Meyer, S., Wucher, A. & Diesing, D., "Photo and particle induced transport of excited carriers in thin film tunnel junctions", Phys. Rev. B 76, 235408 (2007).
連結:
-
107. Shalaev, V., Douketis, C., Stuckless, J. & Moskovits, M., "Light-induced kinetic effects in solids", Phys. Rev. B 53, pp. 11388-11402, (1996).
連結:
-
108. Chalabi, H., Schoen, D. & Brongersma, M., Hot-electron photodetection with a plasmonic nanostripe antenna, Nano Lett. 14, pp. 1374-1380 (2014).
連結:
-
110. M. E. Alperin, T. C. Holloway, R. A. Haken, et al., Development of the Self-Aligned Titanium Silicide Process for VLSI Applications, IEEE Transactions on Electron Devices, 32, 2, pp. 141-149 (1985).
連結:
-
111. H. Iwai, T. Ohguro, S. Ohmi, “NiSi Salicide Technology for Scaled CMOS,” Microelectronic Engineering, 60, 1-2, pp. 157-169 (2002).
連結:
-
112. T. Morimoto, T. Ohguro, H. S. Momose, et al., “Self-Aligned Nickel-Mono-Silicide Technology for High-Speed Deep-Submicrometer Logic CMOS ULSI,” IEEE Transactions on Electron Devices, 42, 5, pp. 915-922, May (1995).
連結:
-
113. C. S. Woo, K. W. Terrill, and P. K. Vasudev, “Two-dimensional analytic modeling of very thin SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 37, no. 9, pp. 1999-2006, (1990).
連結:
-
114. S.-L. Zhang and M. Östling,Metal silicides in CMOS technology: past, present and future trends, Critical reviews in solid state and materials science, vol. 28, no. 1, pp. 1- 129. (1987)
連結:
-
115. C. Wang, J. P. Snyder, J. R. Tucker, “Sub-40nm PtSi Schottky Source/Drain Metal-Oxide-Semiconductor Field-Effect-Transistor,” Applied Physics Letters, 74, 8, pp. 1174-1176, 1999.
連結:
-
116. Q. T. Zhao, F. Klinkhammer, M. Dolle, et al., “Nanometer Patterning of Epitaxial CoSi2/Si(100) for Ultrashort Channel Schottky Barrier Metal-Oxide-Semiconductor Field Effect Transistors,” Applied Physics Letters, 74, 3, pp. 454-456, 1999.
連結:
-
117. Y. Choi, L. Chang, P. Ranade, J. Lee, D. Ha, S. Balasubramanian, A. Agarwal, M. Ameen, , FinFET process refinement for improved mobility and gate work function engineering, IEDM Tech. Dig., pp. 259-262, (2002).
連結:
-
118. Y. Choi, T.-J. King, and C. Hu, “Nanoscale CMOS spacer FinFET for the terabit era,” IEEE Electron device Lett., vol. 23, no. 1, pp. 25-27, (2002).
連結:
-
120. The modulation of Schottky barrier height of NiSi/n-Si Schottky diodes by silicide as diffusion source technique, An Xia et al. Chinese Physics, P4465 (2009).
連結:
-
121. Z. Qiu, Z. Zhang, M. Ostling, and S.-L. Zhang, A comparative study of two different schemes to dopant segregation at NiSi/Si and PtSi/Si interfaces for Schottky barrier height lowering, IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 396–403, Jan. (2008).
連結:
-
122. 林耕德,寬波段與低耗能之光-電-熱偵測與轉換元件研究,國立台灣大學材料科學與工程學研究所博士論文,2016
連結:
-
124. B, Abeles, Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures, Phys. Rev. 131, 1906 – Published 1 September (1963)
連結:
-
125. Chaochao Fu. Materials 2016, 9(5), 315, Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing.
連結:
-
1. Neamen, D.A., Semiconductor physics and devices: basic principles, McGraw-Hill, 2003.
-
2. Sze, S. M., Ng, K. K., Physics of Semiconductor Devices, Wiley, Hoboken, NJ, ed. 3, 2007.
-
3. Mayer, J. W. and Lau, S. S, " Silicides - an introduction", in Silicide Technology for Integrated Circuits.: The IEE, 2004, pp. 15-48
-
4. Dash, W. C. and Rewman, R., Physical review, Vol.99. pp. 1151-1155, 1955.
-
5. Solt, K., Melchior, H., Kroth, U., Kuschnerus, P., Persch, V., Rabus, H., Richter, M., and G. Ulm, Appl. Phys. Lett. 69, pp. 3662–3664, 1996.
-
6. An, X., Liu, F., Jung, Y. J. and Kar, S., Nano Lett, 13, 909, 2013.
-
7. Kikkawa, T., Inoue, K. and Imai, K., "Cobalt silicide technology", in Silicide Technology for Integrated Circuits. London, United Kingdom: The Institution of Electrical Engineers, 2004.
-
10. F. L. Vook, H. J. Stein, Radiation Effects 2, 23 (1969).
-
11. F. Logan, P. E. Jessop, A. P. Knights, R. M Gwilliam,M. P. Halsall, Proc. IEEE A-MRS, Austrailia,IMC2 (2008).
-
12. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, IEEE Photon. Technol. Lett. 19, 152 (2007).
-
13. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Ka ̈rtner, and T. M. Lyszczarz, Opt. Express 15, 16886 (2007).
-
16. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L.Sirleto, Optics Express 20, 12599–12609 (2012).
-
17. B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B.Khurgin, and U. Levy, Optica 2, 335–338 (2015).
-
18. M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, Optics Express 21, 28072–28082 (2013).
-
20. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, Optics Express, 20, 28594–28602 (2012).
-
22. M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, Scientific Report 4(7103), 1–5 (2014).
-
23. M. Amirmazlaghani, F. Raissi, O. Habibpour, J. Vukusic, and J. Stake, IEEE J. of Quant. Elect. 49, 589–594 (2013).
-
24. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, Nano Lett. 16, 3005–3013 (2016).
-
25. P. Vabbina, N. Choudhary, A.Chowdhury, R. Sinha, M. Karabiyik, S. Das, W. Choi, N. Palaoi, and N. Pala, ACS Appl. Mater. Interfaces 7, 15206–15213 (2015).
-
26. J. K. Doylend, P. E. Jessop, and A. P. Knights, Opt. Express 18, 14671 (2010).
-
27. J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, J. of Nanophot. 5-1, 059507 (2011).
-
29. Y. Li, S. Feng, Y. Zhang, and A. W. Poon, Opt. Lett. 38, 5200 (2013).
-
30. X. Li, Z. Li, X. Xiao, H. Xu, J. Yu, and Y. Yu, Phot. Tech. Lett. 27, 729 (2015).
-
31. J. J. Ackert, A. P. Knights, M. Fiorentino, R. Beausoleil, and P. E. Jessop, Optical Interconnects Conference 76(2012).
-
34. P.W. Kruse, L.D. McGlauchlin, R.B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962.
-
36. E.S.Barr,Theinfraredpioneers––II.MacedonioMelloni,InfraredPhys.2(1962)67–73.
-
109. Lin, K.-T.; Chen, H.-L.; Lai, Y.-S.; Yu, C.-C.Nat. Commun.,5, 3288 (2014).
-
119. Marcel V. Migeotte, Phys. Rev. 73, 519 (1948); R. R. McMath, O. C. Mohler, and L. Goldberg, Phys. Rev. 73, 1203 (1948).
-
123. 洪博淵,極寬波段之高效率低耗能之金屬矽化物/矽基光偵測器研究,國立台灣大學材料科學與工程學研究所碩士論文,2015
|