题名

結合網路輿情的電子商務推薦系統之研究-以手機產品為例

并列篇名

A Study of E-commerce Recommendation Systems Based on Sentiment Analysis: A Case Study of Mobile Phones

DOI

10.6846/TKU.2016.00852

作者

張琇媛

关键词

推薦系統 ; 基於內容過濾 ; 協同過濾 ; 輿情分析 ; 電子商務 ; Recommendation system ; Content-based Filtering ; Collaborative Filtering ; Sentiment analysis ; E-commerce

期刊名称

淡江大學資訊管理學系碩士班學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

蕭瑞祥;戴敏育

内容语文

繁體中文

中文摘要

由於資訊的爆炸,已造成資訊的供大於求,使用者須經過不斷的瀏覽及搜尋才能找到所喜歡的商品,因此許多學者開始鑽研資訊過濾的機制,此機制除了解決資訊爆炸的問題外,還能向使用者推薦符合其需求的資訊,幫助使用者能夠過濾並選擇適合自己的商品,而推薦系統就是屬於資訊過濾的一種應用,能夠依據使用者的喜好、需求及興趣,將資訊或商品推薦給使用者,減少使用者在搜尋過程中付出額外時間成本。目前常見的推薦系統形式有內容式過濾、協同式過濾,以及結合上述兩種的混合式,目前混合式推薦已被廣泛應用於電子商務業界。 為求推薦系統所推薦之項目能更符合人們意願,即推薦之項目更為人們接受,因此本研究目的提出一個結合網路輿情的電子商務推薦系統(以下簡稱結合網路輿情型),於背景收集使用者紀錄,透過自動化擷取、意見單元定義擷取與極性分析等步驟收集討論區網友的評論,對商品進行網路輿情分析,給予商品分數並進行商品推薦,最後以結合網路輿情型與未結合網路輿情的傳統型電子商務推薦系統(以下簡稱傳統型)比較其使用者使用意願與推薦準確率來評估本研究之成果。 本研究利用問卷調查、收集使用者紀錄進行推薦系統評估方法與結合網路輿情型的推薦排名影響使用者意願得知,近八成民眾滿意結合網路輿情型,且其所推薦結果之F-Measure為70.48%較傳統型高出近15.75%,可以得知結合網路輿情型之推薦結果較符合使用者心中意願,且其推薦準確率達到九成,且結合網路輿情型會影響使用者對商品的喜好排名。

英文摘要

Due to the information explosion which causes the overload of information, the users have to continuously browse and search to get the information they preferred. Therefore, many scholars start to study information filtering to reduce the problem of information explosion and help user to select the items based on user’s preferences. Recommendation system is one of the use of the information filtering which can provide information or item based on user’s preferences, requirements and interests more efficiently and precisely. Currently, the recommendation methods can be categorized into the following three types: content-based, collaborative and hybrid recommendation methods. The hybrid recommendation method has been most widely used in the field of e-commerce. In order to meet the needs of the user when select products from the recommendation system, this study therefore presented the e-commerce recommendation system with sentiment analysis (ECRS-SA). By using automatic data extraction, opinion extraction, and polarity analysis to collected user’s usage records and comments from the social networks. Then rate the products according to the results of sentiment analysis and give recommendation to users. Finally, we compared ECRS-SA and ECRS-SA without Sentiment Analysis (ECRS) to evaluate user’s need and recommendation accuracy. In this paper, we used the survey of satisfaction and the recommendation system evaluated method to analyze user’s usage records. The experiment results show that eighty percent of people satisfy with the ECRS-SA and the F-Measure of the recommendation result is 70.48% higher than the ECRS by 15.75%. The ECRS-SA results is much match to user’s need and the accuracy rate is over ninety percent. And the user’s preference will be impacted by the ECRS-SA.

主题分类 商管學院 > 資訊管理學系碩士班
社會科學 > 管理學
参考文献
  1. [2] 林祐任、蕭瑞祥,《未來性資訊檢索系統基於網路論壇之研究》,碩士論文,淡江大學資訊管理學系碩士班,2015。
    連結:
  2. [7] 黃心宜、蕭瑞祥,《基於影響力分析之意見單元評價的研究》,碩士論文,淡江大學資訊管理學系碩士班,2014。
    連結:
  3. [8] 黃文奇、吳世弘、陳良圃、谷圳,〈中文文字蘊涵系統之特徵分析〉,2011自然語言與語音處理研討會,台北,2011。
    連結:
  4. [10] 楊盛帆、陸承志,《以整合式規則來做網路論壇上的3C產品口碑分析》,碩士論文,元智大學資訊管理研究所,2009。
    連結:
  5. [12] Billsus, Daniel, and Michael J. Pazzani. “Learning Collaborative Information Filters,” Icml, vol. 98, 1998.
    連結:
  6. [14] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D., “Using collaborative filtering to weave an information tapestry,” Communications of the ACM, pp 61-70, 1992.
    連結:
  7. [16] J. J, C. R, and M. H., “Hybrid Collaborative Filtering Model for improved Recommendation,” IEEE International Conf. on Service Operations and Logistics, and Informatics (SOLI.), pp.142–145, 2013.
    連結:
  8. [17] Kalakota, R, and Whinston, A. B., “Electronic Commerce- A Manager’s Guide”, MA:Addison-Wesley, 1997.
    連結:
  9. [20] M. Zanker and M. Jessenitschnig., “Case‐studies on exploiting explicit customer requirements in recommender systems,” User Modeling and User‐Adapted Interaction, vol. 19, pp 133-136, 2009.
    連結:
  10. [23] Ricci, F., “Travel recommender systems,” IEEE Intelligent Systems, pp 55-57, 2002.
    連結:
  11. [29] Sokolova, M., Japkowicz, N., & Szpakowicz, S., December. “Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation,” In Australasian Joint Conference on Artificial Intelligence, pp. 1015-1021, 2006.
    連結:
  12. [30] W. Kim, et al., “Agent based intelligent search framework for product information using ontology mapping,” Journal of Intelligent Information Systems, vol. 30, p. 227-247, 2008.
    連結:
  13. [31] Wang, W., and Benbasat, I., “Recommendation agents for electronic commerce: Effects of explanation facilities on trusting beliefs,” Journal of Management Information Systems, pp 217-246, 2007.
    連結:
  14. [32] Xiao, B., and Benbasat, I., “E-commerce product recommendation agents: Use, characteristics, and impact,” MIS Quarterly, 31(1), pp 137-209, 2007.
    連結:
  15. 中文部分
  16. [1] 李昌雄,《商業自動化與電子商務導論》,台北:松崗電腦圖書資料股份有限公司,1998。
  17. [3 ]林孟希,《中國大陸電子商務宅配供應鏈之研究─以上海市為例》,碩士論文,國立政治大學經營管理碩士學程,2012。
  18. [4] 邵曉薇、郭雨涵,《電子商務導論》,台北:旗標出版股份有限公司出版,2000。
  19. [5] 徐舜基,《整合準則權重於多準則協同過濾推薦之研究》,碩士論文,中國文化大學資訊管理研究所,2010。
  20. [6] 孫瑛澤、陳建良、劉峻杰、劉昭麟、蘇豐文,〈中文短句之情緒分類〉,自然語言與語音處理研討會,暨南大學,2010。
  21. [9] 黃華山、任文瑗、洪銘建,《網際網路實務與商業應用》,台北:華立圖書股份有限公司,1999。
  22. 英文部分
  23. [11] Basu, C., Hirsh, H., and Cohen, W., July. “Recommendation as classification: Using social and content-based information in recommendation,” In Aaai/iaai, pp. 714-720, 1998.
  24. [13] Cleverdon, C. and Kean, M., “Factors Determining the Performance of Indexing Systems,” In Aslib Cranfield Research Project, Cranfield, England, 1968.
  25. [15] Hu, M., and Liu, B., August. “Mining and summarizing customer reviews,” In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 168-177, 2004.
  26. [18] Kawai, H., Jatowt, A., Tanaka, K., Kunieda, K., & Yamada, K., “ChronoSeeker: Search engine for future and past events,” In Proceedings of the 4th International Conference on Ubiquitous Information Management and Communication, pp 25, 2010.
  27. [19] Liu, B., “Sentiment analysis and subjectivity,” Handbook of Natural Language Processing, 2nd ed. CRC Press, pp 627-666, 2010.
  28. [21] Nunamaker Jr, J. F., Chen, M., and Purdin, T. D., “Systems development in information systems research,” Journal of management information systems, pp 89-106, 1990.
  29. [22] P. Resnick and H. R. Varian., “Recommender systems,” Communications of the ACM, pp 56-58, 1997.
  30. [24] Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J., “Analysis of recommendation algorithms for E-commerce,” In Proceedings of the 2nd ACM Conference on Electronic Commerce (EC’00). pp 285–295, 2000a.
  31. [25] Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J., “Application of dimensionality reduction in recommender system–A case study,” In Proceedings of the ACM WebKDD 2000 Web Mining for E-Commerce Workshop, 2000b.
  32. [26] Sarwar, B. M., Karypis, G., Konstan, J. A, and Riedl, J., “Item-based collaborative filtering recommendation algorithms,” In Proceedings of the 10th international conference on World Wide Web, pp 285-295, Apr. 2001.
  33. [27] Schafer, J. B., Konstan, J., and Riedl, J., “Recommender System Commerce,” Proceedings of the ACM Conference on Electronic Commerce, Nov. 1999.
  34. [28] Schafer, J. B., Konstan, J. A., and Riedl, J., “E-commerce recommendation applications,” In Applications of Data Mining to Electronic Commerce, pp 115-153, 2001.