题名

高血糖鼠燒燙傷口纖維母細胞與轉化生長因子β1分泌之相關性

并列篇名

THE CORRELATION BETWEEN FIBROBLAST AND THE SECRETION OF TGF-β1 IN THE BURNS OF HYPERGLYCEMIC RATS

DOI

10.6840/cycu201600840

作者

呂麗嫦

关键词

高血糖鼠 ; 發光二極體 ; 傷口癒合 ; TGF-β1 ; Hyperglycemic ; TGF-β1 ; Wound healing ; Light emitting diode

期刊名称

中原大學生物醫學工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

謝瑞香;吳木榮

内容语文

繁體中文

中文摘要

糖尿病患者有高血糖症(Hyperglycemia)慢性傷口是普遍的問題,低能量光療(Low Level Light Therapy, LLLT)已被證實能增加在傷口區域的膠原沉積和血流量,促進傷口癒合,而轉化生長因子β1 (Transforming growth factor β, TGF-β1)在傷口中參與纖維母細胞增生和膠原蛋白等多個癒合的過程。本研究之實驗動物使用300-325克之雄性Wistar Rat,腹腔注射Alloxan monohydrate (80~100 mg/kg) 以誘導成高血糖鼠,在背部表皮製造1×1cm2燒燙傷口。本研究以LED (波長630nm、功率14 mW/cm2、總能量密度4 J/cm2之紅光) 光照高血糖鼠燒燙傷口,探討傷口纖維母細胞與TGF-β1分泌之相關性。實驗結果:正常鼠燙傷照光組的纖維母細胞數量在第14天出現最大值681±53個,而高血糖鼠經LED照光後,傷口於第16天出現纖維母細胞數最大值547±78個,有照光治療的正常鼠和高血糖鼠比未照光的細胞生長皆提前2天。有LED光照之正常鼠傷口中TGF-β1分泌量在第4天達峰值553±63 pg/ml,比未照光組提前2天;而光照刺激後促進高血糖鼠傷口TGF-β1分泌量增加,在第12天達峰值759±210 pg/ml,比未照光提前4天。以上結果顯示,LED光照促進高血糖鼠傷口之TGF-β1分泌量較顯著,在傷口癒合初期促進TGF-β1分泌量,傷口癒合後期分泌量降低,同時光照也對高血糖鼠纖維母細胞也具增生作用,纖維母細胞最大值提早2天出現,使傷口癒合大約縮短2天,因此推論高血糖鼠TGF-β1分泌量與纖維母細胞增生可能具有相當的相關性,且LED光照能使高血糖鼠促使傷口提前癒合。

英文摘要

Chronic inflammation process is highly associating to hyperglycemic patients; however, Low Level Light Therapy (LLLT) have been proven that is able to increase the quantity of collagen fiber aggregation around the wound, also stimulating perfusion of the wounding area. TGF-β1 proliferate is able to synthesis of fibroblast and collagen during the wound healing process. In this research we choose 300-325 g male Wistar Rat as our study material, using Alloxan monohydrate (80~100 mg/kg) induce to hyperglycemic individual via Intraperitoneal injection pathway, and we create 1 cm2 scald on the dorsal side of the hyperglycemic Rat. Afterwards irradiate LED (630nm, 14 mW/cm2, 4 J/cm2) on the wound area of the hyperglycemic Rat. Studying the correlation between fibroblast and the secretion of TGF-β1 in the burns of hyperglycemic Rat. In consequence the maximum fibroblasts numbers are around at 681±53 two weeks after healing in normal rat with LED therapy on the burned wound. Yet, the maximum fibroblast numbers of hyperglycemic wounded rat with LED therapy are approximately 547±78 after 16 days. Thus the cells of both hyperglycemic and normal rat under LED therapy are grown faster than those rats without LED therapy. Additionally, the normal with LED therapy rat number of TGF-β1 reach to 553±63 pg/ml in 4 days. Significantly two days faster than those without LED healing; however the hyperglycemic rat which treated by LED illumination increase the TGF-β1 numbers on the wound area, with the maximum quantity 759±210 pg/ml on 12th day, faster than those without LED therapy. According to the result above the hyperglycemic rat treated with LED therapy afterwards indeed increase the secretion of TGF-β1 initially, then decrease the level in the end of the healing period. Meanwhile LED therapeutic also induce the fibroblast number of the hyperglycemic rat, reaching to the maximum number two days faster. In other words shortening 2 days of the wound healing process. Therefore we hypothesis the amount of TGF-β1 secretion is associate to the number of fibroblast proliferate. Further more LED therapy truly help hyperglycemic rat move on wound healing process.

主题分类 醫藥衛生 > 醫藥總論
工學院 > 生物醫學工程學系
参考文献
  1. 1. Al-Watban, F. A., X. Y. Zhang and B. L. Andres (2007). "Low-level laser therapy enhances wound healing in diabetic rats: a comparison of different lasers." Photomedicine and laser surgery 25(2): 72-77.
    連結:
  2. 2. AlGhamdi, K. M., A. Kumar and N. A. Moussa (2012). "Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells." Lasers in medical science 27(1): 237-249.
    連結:
  3. 3. Bibikova, A. and U. Oron (1993). "Promotion of muscle regeneration in the toad (Bufo viridis) gastrocnemius muscle by low-energy laser irradiation." Anat Rec 235: 374-380.
    連結:
  4. 4. Bolten, P., S. Young and M. Dyson (1995). "The direct effect of 860 nm light on cell proliferation and on succinic dehydrogenase activity of human fibroblasts in vitro." Laser Therapy 7: 55-60.
    連結:
  5. 5. Byrnes, K. R., X. J. Wu, R. W. Waynant, I. K. Ilev and J. J. Anders (2005). "Low power laser irradiation alters gene expression of olfactory ensheathing cells in vitro." Lasers in Surgery and Medicine 37(2): 161-171.
    連結:
  6. 6. Christman, A. L., E. Selvin, D. J. Margolis, G. S. Lazarus and L. A. Garza (2011). "Hemoglobin A1c Predicts Healing Rate in Diabetic Wounds." Journal of Investigative Dermatology 131(10): 2121-2127.
    連結:
  7. 7. Conlan, M., J. Rapley and C. Cobb (1996). "Biostimulation of wound healing by low-energy laser irradiation." J Clin Periodontol 23: 492-496.
    連結:
  8. 8. Cowie, C. C., K. F. Rust, E. S. Ford, M. S. Eberhardt, D. D. Byrd-Holt, C. Y. Li, D. E. Williams, E. W. Gregg, K. E. Bainbridge, S. H. Saydah and L. S. Geiss (2009). "Full Accounting of Diabetes and Pre-Diabetes in the US Population in 1988-1994 and 2005-2006." Diabetes Care 32(2): 287-294.
    連結:
  9. 9. Desmet, K. D., D. A. Paz, J. J. Corry, J. T. Eells, M. T. Wong-Riley, M. M. Henry, E. V. Buchmann, M. P. Connelly, J. V. Dovi and H. L. Liang (2006). "Clinical and experimental applications of NIR-LED photobiomodulation." Photomedicine and Laser Therapy 24(2): 121-128.
    連結:
  10. 10. Gasparyan, V. C. (2000). "Method of determination of aortic valve parameters for its reconstruction with autopericardium: An experimental study." Journal of Thoracic and Cardiovascular Surgery 119(2): 386-387.
    連結:
  11. 11. Guo, S. and L. A. DiPietro (2010). "Factors affecting wound healing." Journal of dental research 89(3): 219-229.
    連結:
  12. 12. Hamblin, M. R. and T. N. Demidova (2006). Mechanisms of low level light therapy. Biomedical Optics 2006, International Society for Optics and Photonics.
    連結:
  13. 13. Huang, Y. Y., A. C. H. Chen, J. D. Carroll and M. R. Hamblin (2009). "Biphasic Dose Response in Low Level Light Therapy." Dose-Response 7(4): 358-383.
    連結:
  14. 14. Jia, Y. L. and Z. Y. Guo (2004). "Effect of low-power He-Ne laser irradiation on rabbit articular chondrocytes in vitro (Retracted Article. See vol 37, pg 330, 2005)." Lasers in Surgery and Medicine 34(4): 323-328.
    連結:
  15. 15. Kane, C. J., P. A. Hebda, J. N. Mansbridge and P. C. Hanawalt (1991). "Direct evidence for spatial and temporal regulation of transforming growth factor β1 expression during cutaneous wound healing." Journal of cellular physiology 148(1): 157-173.
    連結:
  16. 16. Kaviani, A., G. E. Djavid, L. Ataie-Fashtami, M. Fateh, M. Ghodsi, M. Salami, N. Zand, N. Kashef and B. Larijani (2011). "A randomized clinical trial on the effect of low-level laser therapy on chronic diabetic foot wound healing: a preliminary report." Photomedicine and Laser Surgery 29(2): 109-114.
    連結:
  17. 17. Kushibiki, T. and K. Awazu (2009). "Blue Laser Irradiation Enhances Extracellular Calcification of Primary Mesenchymal Stem Cells." Photomedicine and Laser Surgery 27(3): 493-498.
    連結:
  18. 19. Nall, A. V., R. E. Brownlee, C. P. Colvin, G. Schultz, D. Fein, N. J. Cassisi, T. Nguyen and A. Kalra (1996). "Transforming growth factor β1 improves wound healing and random flap survival in normal and irradiated rats." Archives of Otolaryngology–Head & Neck Surgery 122(2): 171-177.
    連結:
  19. 24. Posten, W., D. A. Wrone, J. S. Dover, K. A. Arndt, S. Silapunt and M. Alam (2005). "Low‐level laser therapy for wound healing: mechanism and efficacy." Dermatologic surgery 31(3): 334-340.
    連結:
  20. 25. Rocha Júnior, A. M., B. J. Vieira, L. C. F. d. Andrade and F. M. Aarestrup (2007). "Effects of low-level laser therapy on the progress of wound healing in humans: the contribution of in vitro and in vivo experimental studies." Jornal Vascular Brasileiro 6(3): 257-265.
    連結:
  21. 26. Rochkind, S., M. Rousso, M. Nissan, M. Villarreal, L. Barr‐Nea and D. Rees (1989). "Systemic effects of low‐power laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns." Lasers in surgery and medicine 9(2): 174-182.
    連結:
  22. 28. Singer, A. J. and R. A. F. Clark (1999). "Cutaneous wound healing." The New England Journal of Medicine 341(10): 738-746.
    連結:
  23. 29. Sporn, M. B., A. B. Roberts, L. M. Wakefield and R. K. Assoian (1986). "Transforming growth factor-beta: biological function and chemical structure." Science 233(4763): 532-534.
    連結:
  24. 30. Stadle, I., R. Evans, B. Kolb and J. O. Naim (2000). "In Vitro Effects of Low-Level Laser Irradiation at 660 nm on Peripheral Blood Lymphocytes." Lasers in Surgery and Medicine 27: 255-262.
    連結:
  25. 31. Stefan Frank, Marianne Madlener and Sabine Werner (1996). "Transforming growth factors 1, 2, and 3 and their receptors are differentially regulated during normal and impaired wound healing." Journal of Biological Chemistry 271(17): 10188-10193.
    連結:
  26. 32. Stein, A., D. Benayahu, L. Maltz and U. Oron (2005). "Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro." Photomedicine and Laser Surgery 23(2): 161-166.
    連結:
  27. 33. Sun, B. K., Z. Siprashvili and P. A. Khavari (2014). "Advances in skin grafting and treatment of cutaneous wounds." Science 346(6212): 941-945.
    連結:
  28. 34. Velander, P., C. Theopold, T. Hirsch, O. Bleiziffer, B. Zuhaili, M. Fossum, D. Hoeller, R. Gheerardyn, M. Chen, S. Visovatti, H. Svensson, F. Yao and E. Eriksson (2008). "Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia." Wound Repair and Regeneration 16(2): 288-293.
    連結:
  29. 35. Wang, R., A. Ghahary, Q. Shen, P. G. Scott, K. Roy and E. E. Tredget (2000). "Hypertrophic scar tissues and fibroblasts produce more transforming growth factor‐β1 mRNA and protein than normal skin and cells." Wound Repair and Regeneration 8(2): 128-137.
    連結:
  30. 36. Werner, S. and R. Grose (2003). "Regulation of wound healing by growth factors and cytokines." Physiological Reviews 83(3): 835-870.
    連結:
  31. 37. Yu, H., K. Chang, C. Yu, J. Chen and G. Chen (1996). "Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes." J Invest Dermatol 107: 593-596.
    連結:
  32. 18. Mester, E., A. F. Mester and A. Mester (1985). "The biomedical effects of laser application." Lasers in surgery and medicine 5(1): 31-39.
  33. 20. Ohshiro, T. and R. Calderhead (1988). "Low-level laser therapy: a practical introduction." Wiley, New York: 17, 28-30, 33, 34.
  34. 21. Pastar, I., O. Stojadinovic, A. Krzyzanowska, S. Barrientos, C. Stuelten, K. Zimmerman, M. Blumenberg, H. Brem and M. Tomic-Canic (2010). "Attenuation of the transforming growth factor β–signaling pathway in chronic venous ulcers." Molecular Medicine 16(3-4): 92.
  35. 22. Penn, J. W., A. O. Grobbelaar and K. J. Rolfe (2012). "The role of the TGF-β family in wound healing, burns and scarring: a review." International journal of burns and trauma 2(1): 18.
  36. 23. Pinar Avci, A. G., Magesh Sadasivam, MTech, Daniela Vecchio, PhD, Zeev Pam, MD, Nadav Pam, MD, Michael R Hamblin (2013). "Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring." Semin Cutan Med Surg 1(32): 41-52.
  37. 27. Shefer, G., T. A. Partridge, L. Heslop, J. G. Gross, U. Oron and O. Halevy (2002). "Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells." Journal of Cell Science 115(7): 1461-1469.