题名

利用連續流動型反應槽與圖案化ZnAl2O4緩衝層進行點陣列氧化鋅側向磊晶成長之研究

并列篇名

Lateral Epitaxial Overgrowth of ZnO Layers on Patterned ZnAl2O4 Buffer Layers by Continuous Flow Reactor

作者

林宣辰

关键词

氧化鋅 ; 側向磊晶成長 ; 水熱法 ; 晶體缺陷 ; 圖案化製程 ; ZnO ; lateral epitaxial overgrowth ; hydrothermal growth ; crystal defects ; patterning process

期刊名称

義守大學材料科學與工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

陳厚光

内容语文

繁體中文

中文摘要

由於成長高品質氧化鋅磊晶膜層對於氧化鋅於光電元件的製作將會是相當關鍵。為了可以進一步降低磊晶膜層中差排密度,可以進一步搭配圖案化製程,進行側向磊晶成長(Lateral epitaxial overgrowth, LEO)。在前期研究中已證實可透過 “線陣列”圖案化緩衝層陣列輔助,並搭配低溫水熱法製程在藍寶石基板上進行氧化鋅無遮罩式側向磊晶成長,並獲得低差排密度癒合氧化鋅膜層。然而磊晶膜層中仍存在著Wing tilt效應(約0.1o);為了改善Wing tilt效應,本研究將提出另一種圖案設計的緩衝層─六角形點陣列,來進行側向磊晶成長。此外,一般的壓力釜進行長時間水熱法成長,其水溶液前驅物濃度將無法長時間維持穩定晶體成長,因此不可避免需中斷成長並更換新鮮前驅物溶液,因此進而導致增加汙染風險。在本研究中將開發“連續流動型反應槽”,以蠕動幫浦進行前驅物溶液的補充,使反應槽內前驅物維持在一定的濃度; 試片可進行連續長時間水熱法成長。實驗結果顯示膜厚的成長速率約為0.4 μm/hr,並且可以穩定的進行24 hr以上的連續晶體成長。將進一步以連續流動型反應槽,在六角形點陣列圖案化緩衝層上進行連續長時間ZnO側向磊晶成長。經過84小時以上成長,可以獲得完全連續癒合的膜層。從X光繞射搖擺曲線分析結果證實在點陣列上進行LEO成長之氧化鋅膜層幾乎完全沒有Wing tilt效應。膜層平均差排密度為3×108 cm-2。在癒合LEO膜層不同部位之顯微結構,分別透過穿透式電子顯微鏡及微區光激發螢光量測來進行探討。

英文摘要

The growth of high quality zinc oxide (ZnO) epitaxial layers is very critical for the fabrication of ZnO-based optoelectronic device. To further reduce dislocation density in epi-layer, lateral epitaxial overgrowth (LEO) integrating with patterning processing had been proposed. In previous works, maskless LEO of ZnO with low dislocation density on sapphire substrates in low temperature aqueous solution, through the assistance of stripe-patterned buffer layer, was reported. However, a slight wing tilt (a tilted angle of 0.1o) remained in the coalesced LEO ZnO layer grown on a stripe-patterned buffer layer. In order to minimize the degree of wing tilt, in this work, maskless LEO of ZnO layer was performed on the patterned buffer layer using the circular window with hexagonal array. In addition, while using conventional autoclave vessel to implement long-duration hydrothermal growth, the soluble Zn species in the growth solution is insufficient to maintain a stable growth rate. Hence, the crystal growth is inevitably subject to interruption to refresh growth solution, resulting in increasing the risk of contamination. Hence, a continuous flow reactor, which can maintain the concentration of the zinc species in solution during the course of crystal growth by continuously delivering precursor solution, to suit the requirement of long-duration crystal growth, was developed. The growth rate of ZnO epitaxial layer grown by the continuous flow reactor was estimated to be about 0.4μm/hr. It was evident that the continuous flow reactor was competent to perform the long-duration epitaxial growth (>24 hr). Furthermore, the continuous flow reactor was employed to perform long-duration LEO of ZnO layers on hexagonally patterned buffer layer. After LEO growth for 84h, the fully coalesced, continuous, epitaxial layer can be obtained. Based on X-ray diffraction rocking curve (XRC) measurement, the wing tilt effect was almost absent in the coalesced LEO ZnO layer. The average dislocation density in the coalesced LEO layer was about 3×108 cm-2. The site-specific microstructural characterization of LEO-grown ZnO layer was implemented by transmission electron microscopy and micro photoluminescence measurement.

主题分类 理工學院 > 材料科學與工程學系
工程學 > 工程學總論
参考文献
  1. [1] G. Yuan, Z. Ye, L. Zhu, J. Huang, Q. Qian, and B. Zhao, "Gold schottky contacts on n-type ZnO thin films with an Al/Si(100) substrates," Journal of Crystal Growth, vol. 268, pp. 169-173, 2004.
    連結:
  2. [2] Y. B. Zhang, S. Li, and G. K. L. Goh, "Lateral epitaxial overgrowth of ZnO films on a seed layer buffered MgAl2O4 substrate in water," in Third International Conference on Smart Materials and Nanotechnology in Engineering. vol. 8409, J. Leng, Y. BarCohen, I. Lee, and J. Lu, Eds., ed, 2012.
    連結:
  3. [3] W. C. T. Lee, P. Miller, E. D. Walsby, A. Markwitz, J. Kennedy, R. J. Reeves, et al., "Characterisation of ZnO thin films grown directly on sapphire by PAMBE," presented at the 2004 Conference on Optoelectronic and Microelectronic Materials and Devices, Bribane, QLD; Australia, 2005.
    連結:
  4. [4] Y. K. Sun, D. Cherns, R. P. Doherty, J. L. Warren, and P. J. Heard, "Reduction of threading dislocations in ZnO/(0001) sapphire film heterostructure by epitaxial lateral overgrowth of nanorods," Journal of Applied Physics, vol. 104, p. 023533, Jul 15 2008.
    連結:
  5. [5] H. L. Zhou, H. Pan, T. K. Chan, C. S. Ho, Y. P. Feng, S. J. Chua, et al., "Channeling contrast microscopy of epitaxial lateral overgrowth of ZnO/GaN films," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 260, pp. 299-303, Jul 2007.
    連結:
  6. [6] H.-G. Chen, Y.-H. Shih, and M.-Y. Yu, "Patterned buffer layer promotes maskless lateral epitaxial overgrowth of low-dislocation-density ZnO films in aqueous solution at low temperature," Applied Physics Express, vol. 8, p. 045502, 2015.
    連結:
  7. [9] G. Alombert-Goget, H. Li, Y. Guyot, A. Brenier, and K. Lebbou, "Luminescence and coloration of undoped and Ti-doped sapphire crystals grown by Czochralski technique," Journal of Luminescence, vol. 169, pp. 516-519, 2016.
    連結:
  8. [11] M. A. Jazi, T. Meisch, M. Klein, and F. Scholz, "Defect reduction in GaN regrown on hexagonal mask structure by facet assisted lateral overgrowth," Journal of Crystal Growth, vol. 429, pp. 13-18, Nov 1 2015.
    連結:
  9. [13] S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, et al., "Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst," J Am Chem Soc, vol. 130, pp. 14958-9, Nov 12 2008.
    連結:
  10. [15] H.-G. Chen, C.-W. Wang, and Z.-F. Tu, "Hydrothermal epitaxial growth of ZnO films on sapphire substrates presenting epitaxial ZnAl2O4 buffer layers," Materials Chemistry and Physics, vol. 144, pp. 199-205, 2014.
    連結:
  11. [16] D. Cherns and Y. Sun, "Defect reduction by epitaxial lateral overgrowth of nanorods in ZnO/(0001) sapphire films," Applied Physics Letters, vol. 92, p. 051909, Feb 2008.
    連結:
  12. [17] A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, and A. Waag, "High-quality ZnO layers grown by MBE on sapphire," Superlattices and Microstructures, vol. 38, pp. 265-271, 2005.
    連結:
  13. [18] S. Einfeldt, A. M. Roskowski, E. A. Preble, and R. F. Davis, "Strain and crystallographic tilt in uncoalesced GaN layers grown by maskless pendeoepitaxy," Applied Physics Letters, vol. 80, pp. 953-955, Feb 2002.
    連結:
  14. [19] P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J. P. Ibbetson, et al., "High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers," Applied Physics Letters, vol. 75, pp. 1706-1708, Sep 1999.
    連結:
  15. [20] Q. You, H. Cai, Z. Hu, P. Liang, S. Prucnal, S. Zhou, et al., "Blue shift in absorption edge and widening of band gap of ZnO by Al doping and Al–N co-doping," Journal of Alloys and Compounds, vol. 644, pp. 528-533, 2015.
    連結:
  16. [21] J. M. Ashfaq, B. C. Hu, N. Zhou, J. Shaibo, C. Y. Ma, and Q. Y. Zhang, "Extraordinary near-band-edge photoluminescence in the highly epitaxial ZnO films deposited by PLD," Journal of Luminescence, vol. 178, pp. 192-195, 2016.
    連結:
  17. [22] S. Singh, R. Kumar, T. Ganguli, R. S. Srinivasa, and S. S. Major, "High optical quality ZnO epilayers grown on sapphire substrates by reactive magnetron sputtering of zinc target," Journal of Crystal Growth, vol. 310, pp. 4640-4646, 2008.
    連結:
  18. [23] M. A. Boukadhaba, A. Fouzri, V. Sallet, S. S. Hassani, G. Amiri, A. Lusson, et al., "Characterization of ZnO thin film grown on c-plane substrates by MO-CVD: Effect of substrate annealing temperature, vicinal-cut angle and miscut direction," Superlattices and Microstructures, vol. 85, pp. 820-834, 2015.
    連結:
  19. [24] Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, et al., "Void Structures in Regularly Patterned ZnO Nanorods Grown with the Hydrothermal Method," Journal of Nanomaterials, p. 756401, 2014.
    連結:
  20. [25] C. M. Shin, J. Y. Lee, J. H. Heo, J. H. Park, C. R. Kim, H. Ryu, et al., "Effects of the annealing duration of the ZnO buffer layer on structural and optical properties of ZnO rods grown by a hydrothermal process," Applied Surface Science, vol. 255, pp. 8501-8505, 2009.
    連結:
  21. [26] K. Hiramatsu, "Epitaxial lateral overgrowth techniques used in group III nitride epitaxy," Journal of Physics-Condensed Matter, vol. 13, pp. 6961-6975, Aug 2001.
    連結:
  22. [27] X. Ni, U. Ozgur, Y. Fu, N. Biyikli, J. Xie, A. A. Baski, et al., "Defect reduction in (11(2)over-bar-0) a-plane GaN by two-stage epitaxial lateral overgrowth," Applied Physics Letters, vol. 89, Dec 2006.
    連結:
  23. [28] J. Wang, L. W. Guo, H. Q. Jia, Z. G. Xing, Y. Wang, J. F. Yan, et al., "Investigation of characteristics of laterally overgrown GaN on striped sapphire substrates patterned by wet chemical etching," Journal of Crystal Growth, vol. 290, pp. 398-404, May 2006.
    連結:
  24. [29] S. P. Fillery and F. F. Lange, "Aqueous lateral epitaxy overgrowth of ZnO on (0001) GaN at 90 degrees C: Part I. Increasing the critical thickness," Thin Solid Films, vol. 518, pp. 6022-6029, Aug 2010.
    連結:
  25. [30] S. P. Fillery, D. R. Clarke, and F. F. Lange, "Aqueous lateral epitaxy overgrowth of ZnO on (0001) GaN at 90 degrees C Part II: Stress determination," Thin Solid Films, vol. 518, pp. 6030-6035, Aug 2010.
    連結:
  26. [31] Z. R. Zytkiewicz, J. Domagala, D. Dobosz, and J. Bak-Misiuk, "Strain in GaAs layers grown by liquid phase epitaxial lateral overgrowth," Journal of Applied Physics, vol. 86, pp. 1965-1969, Aug 1999.
    連結:
  27. [32] Z. R. Zytkiewicz, "Laterally overgrown structures as substrates for lattice mismatched epitaxy," Thin Solid Films, vol. 412, pp. 64-75, Jun 2002.
    連結:
  28. [33] N. S. Yu, X. L. Zhu, M. Z. Peng, and J. M. Zhou, "Wing tilt investigations on GaN epilayer grown on maskless grooved sapphire by MOCVD," Journal of Materials Science, vol. 45, pp. 1503-1506, Mar 2010.
    連結:
  29. [35] A. Sakai, H. Sunakawa, and A. Usui, "Transmission electron microscopy of defects in GaN films formed by epitaxial lateral overgrowth," Applied Physics Letters, vol. 73, pp. 481-483, Jul 1998.
    連結:
  30. [36] Z. R. Zytkiewicz, "Strain in epitaxial laterally overgrown structures," Opto-Electronics Review, vol. 9, pp. 142-149, Jun 2001.
    連結:
  31. [37] W. M. Chen, P. J. McNally, K. Jacobs, T. Tuomi, A. N. Danilewsky, Z. R. Zytkiewicz, et al., "Determination of crystal misorientation in epitaxial lateral overgrowth of GaN," Journal of Crystal Growth, vol. 243, pp. 94-102, Aug 2002.
    連結:
  32. [38] J. J. Richardson and F. F. Lange, "Controlling Low Temperature Aqueous Synthesis of ZnO. 2. A Novel Continuous Circulation Reactor," Crystal Growth & Design, vol. 9, pp. 2576-2581, 2009.
    連結:
  33. [7] G. Cao and Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications: World Scientific, 2011.
  34. [8] T. Kuech, Handbook of Crystal Growth: Thin Films and Epitaxy: Elsevier Science, 2014.
  35. [10] F. P. Miller, A. F. Vandome, and M. B. John, Czochralski Process: VDM Publishing, 2010.
  36. [12] T. Yao and S. K. Hong, Oxide and Nitride Semiconductors: Processing, Properties, and Applications: Springer Berlin Heidelberg, 2009.
  37. [14] R.-M. Ko, Y.-R. Lin, S.-J. Wang, S.-M. Su, Y.-C. Huang, and T.-H. Yu, "Epitaxial Growth of ZnO Films on Patterned c-Plane GaN Layer Using Hydrothermal Method," ECS Journal of Solid State Science and Technology, vol. 4, pp. N111-N116, January 1, 2015 2015.
  38. [34] Z. R. Zytkiewicz, J. Z. Domagala, D. Dobosz, L. Dobaczewski, A. Rocher, C. Clement, et al., "Tilt and dislocations in epitaxial laterally overgrown GaAs layers," Journal of Applied Physics, vol. 101, p. 013508, Jan 2007.
被引用次数
  1. 顏士喬(2017)。高分子複合材輔助水熱法成長雙軸向規則排列氧化鋅晶體薄膜。義守大學材料科學與工程學系學位論文。2017。1-121。